Quiz IV General Chemistry II Lecture Dr. Hahn 20 pts 3/1/13 F form A 9:30 am quiz\# \qquad
Name \qquad (print) Name \qquad (sign) Please show all work for full credit \& to get partial credit. (suggestion: A guess is better than no answer.)

1. For the following overall reaction (not reaction mechanism step, the overall reaction), Given the concentrations and rates, give the order of the reactant by circling the order for the reagent given. You should assume an irreversible reaction. (note: I made up these reactions to illustrate the point so the reactions as given may not go experimentally as written.) (3 pts each, 6 pts total)

$\mathrm{Cl}_{2}+2 \mathrm{O}_{3} \rightarrow 2 \mathrm{ClO}+2 \mathrm{O}_{2}$	double $\mathrm{O}_{2}-$ rate hocharge	
$\left[\mathrm{Cl}_{2}\right]$	$\left[\mathrm{O}_{3}\right]$	rate
2	2	4
4	2	4
2	4	8

order of the $[\mathrm{Cl}]$ is (zero) (one) (circle one)
order of the $\left[\mathrm{O}_{3}\right]$ is (zero) (one) (circle one)
2. For the following reaction give the equation for the equilibrium constant (K) in concentrations of the reagents given. You should assume that the gases dissolve so that you can give K in concentrations of the units of molarity. (6 pts)

$$
\mathrm{K}=\frac{[\mathrm{CO}]\left[\mathrm{H}_{2}\right]}{\left[\mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \rightarrow \mathrm{CO}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g})\right.}
$$

$$
\frac{C \text { is solid -leave out }}{\text { of } K \text { expression }}
$$

3. For the reaction given, set up the ICE table for a reaction in which the reactant gases are mixed in a constant volume of an inert solvent with no products present initially: (1 pt each blank, 9 pts total)

$$
\mathrm{CO}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow \mathrm{COCl}_{2}(\mathrm{~g})
$$

If the initial concentration of the $\mathrm{CO}(\mathrm{g})$ is 0.415 M , and the intial concentration of $\mathrm{Cl}_{2}(\mathrm{~g})$ is 0.543 M . If at equilibrium, the concentration of the COCl_{2} is 0.098 M . Show the initial, change and equilibrium concentrations for all 3 reagents .

Quiz IV General Chemistry II Lecture Dr. Hahn 20 pts 3/1/13 F form B 9:30 am quiz \# \qquad
Name \qquad (print) Name \qquad (sign) Please show all work for full credit \& to get partial credit. (suggestion: A guess is better than no answer.)

1. For the following overall reaction (not reaction mechanism step, the overall reaction), Given the concentrations and rates, give the order of the reactant by circling the order for the reagent given. You should assume an irreversible reaction. (note: I made up these reactions to illustrate the point so the reactions as given may not go experimentally as written.) (3 pts each, 6 pts total)

order of the $\left[\mathrm{H}_{2}\right]$ is (zero) (one) (circle one)
order of the $\left[\mathrm{Br}_{2}\right]$ is (zero) (one) (circle one)
2. For the following reaction give the equation for the equilibrium constant (K) in concentrations of the reagents given. You should assume that the gases dissolve so that you can give K in concentrations of the units of molarity. (6 pts)

$$
\left.\mathrm{K}=\frac{[\mathrm{NO}]^{2}\left[\mathrm{Br}_{2}\right]}{\left[\mathrm{Br}(\mathrm{~g}) \rightarrow 2 \mathrm{NO}(\mathrm{~g})+\mathrm{Br}_{2}(\mathrm{~g})\right.}\right]^{2}
$$

$$
\begin{aligned}
& \text { using } a A+b B \stackrel{\rightharpoonup}{ }=C+d D \\
& k=\frac{(C]^{c}[D]^{d}}{(A)^{a}[B]^{b}}
\end{aligned}
$$

3. For the reaction given, set up the ICE table for a reaction in which the reactant gases are mixed in a constant volume of an inert solvent with no products present initially: (1 pt each blank, 9 pts total)

$$
\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})
$$

If the initial concentration of the $\mathrm{N}_{2}(\mathrm{~g})$ is 0.985 M , and the intial concentration of $\mathrm{H}_{2}(\mathrm{~g})$ is 0.996 M . If at equilibrium, the concentration of the NH_{3} is 0.057 M . Show the initial, change and equilibrium concentrations for all 3 reagents .

Quiz IV General Chemistry II Lecture Dr. Hahn 20 pts 3/1/13 F form A 11:30 am quiz\# \qquad
Name \qquad (print) Name \qquad (sign) Please show all work for full credit \& to get partial credit. (suggestion: A guess is better than no answer.)

1. For the following overall reaction (not reaction mechanism step, the overall reaction), Given the concentrations and rates, give the order of the reactant by circling the order for the reagent given. You should assume an irreversible reaction. (note: I made up these reactions to illustrate the point so the reactions as given may not go experimentally as written.) (3 pts each, 6 pts total)

2. For the following reaction give the equation for the equilibrium constant (K) in concentrations of the reagents given. You should assume that the gases dissolve so that you can give K in concentrations of the units of molarity. (6 pts)

$$
\begin{aligned}
& \mathrm{CO}_{3}^{-2}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{HCO}_{3}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) \\
& \mathrm{K}=\frac{\left[\mathrm{CO}_{3}^{-\alpha}\right]\left[\mathrm{COH}^{-2}\right]}{\left[\mathrm{CO}_{3}\right]}
\end{aligned}
$$

expression
3. For the reaction given, set up the ICE table for a reaction in which the reactant gases are mixed in a constant volume of an inert solvent with no products present initially: (1 pt each blank, 9 pts total)

$$
2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{SO}_{3}(\mathrm{~g})
$$

If the initial concentration of the $\mathrm{SO}_{2}(\mathrm{~g})$ is 0.117 M , and the intial concentration of $\mathrm{O}_{2}(\mathrm{~g})$ is 0.223 M . If at equilibrium, the concentration of the SO_{3} is 0.043 M . Show the initial, change and equilibrium concentrations for all 3 reagents .

Quiz IV General Chemistry II Lecture Dr. Hahn 20 pts $3 / 1 / 13$ F form B 11:30 am quiz\# \qquad
Name \qquad (print) Name \qquad (sign) Please show all work for full credit \& to get partial credit. (suggestion: A guess is better than no answer.)

1. For the following overall reaction (not reaction mechanism step, the overall reaction), Given the concentrations and rates, give the order of the reactant by circling the order for the reagent given. You should assume an irreversible reaction. (note: I made up these reactions to illustrate the point so the reactions as given may not go experimentally as written.) (3 pts each, 6 pts total)

$$
\begin{aligned}
& 2 \mathrm{NH}_{3}(\mathrm{aq})+\mathrm{OCl}^{-}(\mathrm{aq}) \rightarrow \mathrm{N}_{2} \mathrm{H}_{4}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{Cl}^{-}(\mathrm{aq}) \\
& {\left[\mathrm{NH}_{3}\right]\left[\mathrm{OCl}^{-}\right]} \\
& 2
\end{aligned}
$$

2. For the following reaction give the equation for the equilibrium constant (K) in concentrations of the reagents given. You should assume that the gases dissolve so that you can give K in concentrations of the units of molarity. (6 pts)

$$
\text { using } a A+b B \geqslant C C+d D
$$

3. For the reaction given, set up the ICE table for a reaction in which the reactant gases are mixed in a constant volume of an inert solvent with no products present initially: (1 pt each blank, 9 pts total)

$$
\mathrm{N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NO}(\mathrm{~g})
$$

If the initial concentration of the $\mathrm{N}_{2}(\mathrm{~g})$ is 0.789 M , and the intial concentration of $\mathrm{O}_{2}(\mathrm{~g})$ is 0.899 M . If at equilibrium, the concentration of the NO is 0.230 M . Show the initial, change and equilibrium concentrations for all 3 reagents .

$$
\begin{aligned}
& \mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NH}_{3}(\mathrm{~g}) \\
& K=\frac{\left[N H_{3}\right]^{2}}{\left[N_{2}\right]\left[H_{2}\right]^{3}} \\
& k=\frac{[C]^{c}[D]^{d}}{[A]^{a}[B]^{b}}
\end{aligned}
$$

\qquad
Name \qquad (print) Name \qquad (sign)
Please show all work for full credit \& to get partial credit. (suggestion: A guess is better than no answer.)

1. For the following overall reaction (not reaction mechanism step, the overall reaction), Given the concentrations and rates, give the order of the reactant by circling the order for the reagent given. You should assume an irreversible reaction. (note: I made up these reactions to illustrate the point so the reactions as given may not go experimentally as written.) (3 pts each, 6 pts total)
$\mathrm{Cl}_{2}+2 \mathrm{O}_{3} \rightarrow 2 \mathrm{ClO}+2 \mathrm{O}_{2}$
$\left[\mathrm{Cl}_{2}\right] \quad\left[\mathrm{O}_{3}\right] \quad$ rate

2	2	4
4	2	4
2	4	8

order of the [Cl] is (zero) (one) (circle one)
order of the $\left[\mathrm{O}_{3}\right.$] is (zero)(one) (circle one)
2. For the following reaction give the equation for the equilibrium constant (K) in concentrations of the reagents given. You should assume that the gases dissolve so that you can give K in concentrations of the units of molarity. (6 pts)

$$
\mathrm{C}(\mathrm{~s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \rightarrow \mathrm{CO}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g})
$$

$$
K=
$$

3. For the reaction given, set up the ICE table for a reaction in which the reactant gases are mixed in a constant volume of an inert solvent with no products present initially: (1 pt each blank, 9 pts total)
$\mathrm{CO}(\mathrm{g})+\mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow \mathrm{COCl}_{2}(\mathrm{~g})$
If the initial concentration of the $\mathrm{CO}(\mathrm{g})$ is 0.415 M , and the intial concentration of $\mathrm{Cl}_{2}(\mathrm{~g})$ is 0.543 M . If at equilibrium, the concentration of the COCl_{2} is 0.098 M . Show the initial, change and equilibrium concentrations for all 3 reagents .

	$[\mathrm{CO}]$	$\left[\mathrm{Cl}_{2}\right]$	$\left[\mathrm{COCl}_{2}\right]$
Initial			
Change			
Equilibrium			

\qquad
Name \qquad (print) Name \qquad (sign)
Please show all work for full credit \& to get partial credit. (suggestion: A guess is better than no answer.)
4. For the following overall reaction (not reaction mechanism step, the overall reaction), Given the concentrations and rates, give the order of the reactant by circling the order for the reagent given. You should assume an irreversible reaction. (note: I made up these reactions to illustrate the point so the reactions as given may not go experimentally as written.) (3 pts each, 6 pts total)
$\mathrm{H}_{2}+2 \mathrm{Br}_{2} \rightarrow 2 \mathrm{HBr}+2 \mathrm{Br}^{-}$
$\left[\mathrm{H}_{2}\right] \quad\left[\mathrm{Br}_{2}\right] \quad$ rate

3	3	1
3	6	2
6	3	1

order of the $\left[\mathrm{H}_{2}\right]$ is (zero) (one) (circle one)
order of the [Br_{2}] is (zero)(one) (circle one)
5. For the following reaction give the equation for the equilibrium constant (K) in concentrations of the reagents given. You should assume that the gases dissolve so that you can give K in concentrations of the units of molarity. (6 pts)

$$
\begin{aligned}
& 2 \mathrm{BrNO}(\mathrm{~g}) \rightarrow 2 \mathrm{NO}(\mathrm{~g})+\mathrm{Br}_{2}(\mathrm{~g}) \\
& \mathrm{K}=
\end{aligned}
$$

6. For the reaction given, set up the ICE table for a reaction in which the reactant gases are mixed in a constant volume of an inert solvent with no products present initially: (1 pt each blank, 9 pts total)
$\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})$
If the initial concentration of the $\mathrm{N}_{2}(\mathrm{~g})$ is 0.985 M , and the intial concentration of $\mathrm{H}_{2}(\mathrm{~g})$ is 0.996 M . If at equilibrium, the concentration of the NH_{3} is 0.057 M . Show the initial, change and equilibrium concentrations for all 3 reagents .

	$\left[\mathrm{N}_{2}\right]$	$\left[\mathrm{H}_{2}\right]$	$\left[\mathrm{NH}_{3}\right]$
Initial			
Change			
Equilibrium			

\qquad
Name \qquad (print) Name \qquad (sign) Please show all work for full credit \& to get partial credit. (suggestion: A guess is better than no answer.)
7. For the following overall reaction (not reaction mechanism step, the overall reaction), Given the concentrations and rates, give the order of the reactant by circling the order for the reagent given. You should assume an irreversible reaction. (note: I made up these reactions to illustrate the point so the reactions as given may not go experimentally as written.) (3 pts each, 6 pts total)

$$
\mathrm{H}_{2}(\mathrm{~g})+\mathrm{Cl}(\mathrm{~g}) \rightarrow \mathrm{HCl}(\mathrm{~g})+\mathrm{H}(\mathrm{~g})
$$

$\left[\mathrm{H}_{2}\right][\mathrm{Cl}] \quad$ rate

9	9	4
9	18	4
18	9	4

order of the $\left[\mathrm{H}_{2}\right]$ is (zero) (one) (circle one) order of the [Cl] is (zero)(one) (circle one)
8. For the following reaction give the equation for the equilibrium constant (K) in concentrations of the reagents given. You should assume that the gases dissolve so that you can give K in concentrations of the units of molarity. (6 pts)
$\mathrm{CO}_{3}^{-2}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{HCO}^{3-}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})$
K =
9. For the reaction given, set up the ICE table for a reaction in which the reactant gases are mixed in a constant volume of an inert solvent with no products present initially: (1 pt each blank, 9 pts total)
$2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{SO}_{3}(\mathrm{~g})$
If the initial concentration of the $\mathrm{SO}_{2}(\mathrm{~g})$ is 0.117 M , and the intial concentration of $\mathrm{O}_{2}(\mathrm{~g})$ is 0.223 M . If at equilibrium, the concentration of the SO_{3} is 0.043 M . Show the initial, change and equilibrium concentrations for all 3 reagents .

	$\left[\mathrm{SO}_{2}\right]$	$\left[\mathrm{O}_{2}\right]$	$\left[\mathrm{SO}_{3}\right]$
Initial			
Change			
Equilibrium			

\qquad
Name \qquad (print) Name \qquad (sign) Please show all work for full credit \& to get partial credit. (suggestion: A guess is better than no answer.)
10. For the following overall reaction (not reaction mechanism step, the overall reaction), Given the concentrations and rates, give the order of the reactant by circling the order for the reagent given. You should assume an irreversible reaction. (note: I made up these reactions to illustrate the point so the reactions as given may not go experimentally as written.) (3 pts each, 6 pts total)
$2 \mathrm{NH}_{3}(\mathrm{aq})+\mathrm{OCl}^{-}(\mathrm{aq}) \rightarrow \mathrm{N}_{2} \mathrm{H}_{4}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{Cl}^{-}(\mathrm{aq})$
$\left[\mathrm{NH}_{3}\right]\left[\mathrm{OCl}^{-}\right]$rate

2	4	3
4	4	6
2	8	3

order of the $\left[\mathrm{NH}_{3}\right]$ is (zero) (one) (circle one) order of the $\left[\mathrm{OCl}^{-}\right]$is (zero)(one) (circle one)
11. For the following reaction give the equation for the equilibrium constant (K) in concentrations of the reagents given. You should assume that the gases dissolve so that you can give K in concentrations of the units of molarity. (6 pts)

$$
\begin{aligned}
& \mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NH}_{3}(\mathrm{~g}) \\
& \mathrm{K}=
\end{aligned}
$$

12. For the reaction given, set up the ICE table for a reaction in which the reactant gases are mixed in a constant volume of an inert solvent with no products present initially: (1 pt each blank, 9 pts total)
$\mathrm{N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NO}(\mathrm{g})$
If the initial concentration of the $\mathrm{N}_{2}(\mathrm{~g})$ is 0.789 M , and the intial concentration of $\mathrm{O}_{2}(\mathrm{~g})$ is 0.899 M . If at equilibrium, the concentration of the NO is 0.230 M . Show the initial, change and equilibrium concentrations for all 3 reagents .

	$\left[\mathrm{N}_{2}\right]$	$\left[\mathrm{O}_{2}\right]$	$[\mathrm{NO}]$
Initial			
Change			
Equilibrium			

