Quiz IV General Chemistry II Lecture Dr. Hahn 20 pts 3/1/13 F form A 9:30 am quiz #____

 Name
 (print) Name
 (sign)

 Please show all work for full credit & to get partial credit. (suggestion: A guess is better than no answer.)

1. For the following overall reaction (not reaction mechanism step, the overall reaction), Given the concentrations and rates, give the order of the reactant by circling the order for the reagent given. You should assume an irreversible reaction. (note: I made up these reactions to illustrate the point so the reactions as given may not go experimentally as written.) (3 pts each, 6 pts total)

$Cl_2 + 2O_3$	→ 2 ClO +	2 O ₂	Double Cl2 - vate hollarge
[Cl ₂]	[O ₃]	rate	Joule Oz - rate doublas
2	2	4	
4	2	4	Vito = 6/00/1021
2	4	8	

order of the [Cl] is (zero) (one) (circle one) order of the [O₃] is (zero) (one) (circle one)

2. For the following reaction give the equation for the equilibrium constant (K) in concentrations of the reagents given. You should assume that the gases dissolve so that you can give K in concentrations of the units of molarity. (6 pts)

$$C(s) + H_2O(g) \rightarrow CO(g) + H_2(g) \qquad \underbrace{Cis \text{ solid} - \text{leave out}}_{OF \text{ K expression}}$$

$$K = \underbrace{CO]C(h_2)}_{C(h_2O)} \qquad OF \text{ K expression}$$

3. For the reaction given, set up the ICE table for a reaction in which the reactant gases are mixed in a constant volume of an inert solvent with no products present initially: (1 pt each blank, 9 pts total)

 $CO(g) + Cl_2(g) \rightarrow COCl_2(g)$

If the initial concentration of the CO (g) is 0.415 M, and the initial concentration of Cl_2 (g) is 0.543 M. If at equilibrium, the concentration of the CO Cl_2 is 0.098 M. Show the initial, change and equilibrium concentrations for all 3 reagents.

	[CO]	[Cl ₂]	[COCl ₂]
Initial	0,415	0,543	0
Change	-0,098	- 0.098	+ 0.098
Equilibrium	0.317	0.445	0.098

 Quiz IV General Chemistry II Lecture Dr. Hahn 20 pts 3/1/13 F form B 9:30 am quiz #_____

 Name
 (print) Name
 (sign)

 Please show all work for full credit & to get partial credit. (suggestion: A guess is better than no answer.)

1. For the following overall reaction (not reaction mechanism step, the overall reaction), Given the concentrations and rates, give the order of the reactant by circling the order for the reagent given. You should assume an irreversible reaction. (note: I made up these reactions to illustrate the point so the reactions as given may not go experimentally as written.) (3 pts each, 6 pts total)

order of the $[H_2]$ is zero (one) (circle one) order of the $[Br_2]$ is (zero) (one) (circle one)

2. For the following reaction give the equation for the equilibrium constant (K) in concentrations of the reagents given. You should assume that the gases dissolve so that you can give K in concentrations of the units of molarity. (6 pts)

3. For the reaction given, set up the ICE table for a reaction in which the reactant gases are mixed in a constant volume of an inert solvent with no products present initially: (1 pt each blank, 9 pts total)

 $N_2(g) + 3H_2(g) \rightarrow 2 NH_3(g)$

If the initial concentration of the N₂ (g) is 0.985 M, and the initial concentration of H₂ (g) is 0.996 M. If at equilibrium, the concentration of the NH₃ is 0.057 M. Show the initial, change and equilibrium concentrations for all 3 reagents . 0.0285 0.0285

Initial	0,985	0,996	0
Change	- 0.051	$-\left(\frac{0.05\eta}{2}\right)\times 3^{-1}$	+0.051
Equilibrium	0.951	0,911	0.051

Quiz IV General Chemistry II Lecture Dr. Hahn 20 pts 3/1/13 F form A 11:30 am quiz #_ (print) Name (sign) Name Please show all work for full credit & to get partial credit. (suggestion: A guess is better than no answer.)

For the following overall reaction (not reaction mechanism step, the overall reaction), Given the 1. concentrations and rates, give the order of the reactant by circling the order for the reagent given. You should assume an irreversible reaction. (note: I made up these reactions to illustrate the point so the reactions as given may not go experimentally as written.) (3 pts each, 6 pts total)

Double CCC) rate nochose Double Clbs] rate no chose About Le Clbs] rate no chose Nato = K lbs) ° [CC] ° rate one) \rightarrow HCl(g) + H(g)+ Cl(g) $H_2(g)$ $[H_2]$ [C1] rate 9 9 9 18 9 18

order of the $[H_2]$ is (zero))(one) (circle one) order of the [Cl] is (zero) (one) (circle one)

For the following reaction give the equation for the equilibrium constant (K) in concentrations of the 2. reagents given. You should assume that the gases dissolve so that you can give K in concentrations of the units of molarity. (6 pts)

$$CO_{3}^{-2}(aq) + H_{2}O(l) \rightarrow HCO_{3}^{2}(aq) + OH(aq)$$

$$K = \underbrace{\left(H - O_{3}^{-2}\right)\left(O + J\right)}_{CO_{3}^{-2}}$$

the is a liquid Leove it out of equilibrium expression

For the reaction given, set up the ICE table for a reaction in which the reactant gases are mixed in a 3. constant volume of an inert solvent with no products present initially: (1 pt each blank, 9 pts total)

 $2 \operatorname{SO}_2(g) + \operatorname{O}_2(g) \rightarrow 2 \operatorname{SO}_3(g)$

If the initial concentration of the SO₂ (g) is 0.117 M, and the initial concentration of O₂ (g) is 0.223 M. If at equilibrium, the concentration of the SO₃ is 0.043 M. Show the initial, change and equilibrium concentrations for all 3 reagents . 0.0215 A

	[SO ₂]	[O ₂]	[SO ₃]
Initial	0.117	0,223	0
Change	-0,043	- 0,043/2	+ 0,043
Equilibrium	0,014	0,202	0.043

Quiz IV General Chemistry II Lecture Dr. Hahn 20 pts 3/1/13 F form B 11:30 am quiz #_____

Name Key (print) Name (sign) Please show all work for full credit & to get partial credit. (suggestion: A guess is better than no answer.)

1. For the following overall reaction (not reaction mechanism step, the overall reaction), Given the concentrations and rates, give the order of the reactant by circling the order for the reagent given. You should assume an irreversible reaction. (note: I made up these reactions to illustrate the point so the reactions as given may not go experimentally as written.) (3 pts each, 6 pts total)

2. For the following reaction give the equation for the equilibrium constant (K) in concentrations of the reagents given. You should assume that the gases dissolve so that you can give K in concentrations of the units of molarity. (6 pts)

$$N_{2}(g) + 3H_{2}(g) \rightarrow 2 \text{ NH}_{3}(g)$$

$$K = \frac{(NH_{3})^{2}}{(N_{1})^{2}}$$

$$K = \frac{(C)^{2} (D)^{2}}{(A)^{2}}$$

$$K = \frac{(C)^{2} (D)^{2}}{(A)^{2}}$$

$$K = \frac{(C)^{2} (D)^{2}}{(A)^{2}}$$

3. For the reaction given, set up the ICE table for a reaction in which the reactant gases are mixed in a constant volume of an inert solvent with no products present initially: (1 pt each blank, 9 pts total)

 $N_2(g) + O_2(g) \rightarrow 2 NO(g)$

If the initial concentration of the N₂ (g) is 0.789 M, and the initial concentration of O₂ (g) is 0.899 M. If at equilibrium, the concentration of the NO is 0.230 M. Show the initial, change and equilibrium concentrations for all 3 reagents .

	-		
	[N ₂]	[0 ₂]	[NO]
Initial	0.789	0.899	0
Change	- 0,230/2	- 0.230/2	+ 0,230
Equilibrium	0,614	0,784	0.230

Quiz IV General Chemistry II Lecture Dr. Hahn 20 pts 3/1/13 F form A 9:30 am quiz #_____

(print) Name Name (sign) Please show all work for full credit & to get partial credit. (suggestion: A guess is better than no answer.)

1. For the following overall reaction (not reaction mechanism step, the overall reaction), Given the concentrations and rates, give the order of the reactant by circling the order for the reagent given. You should assume an irreversible reaction. (note: I made up these reactions to illustrate the point so the reactions as given may not go experimentally as written.) (3 pts each, 6 pts total)

 $Cl_2 + 2O_3 \rightarrow 2ClO + 2O_2$

$[Cl_2]$	[O ₃]	rate
2	2	4
4	2	4
2	4	8

order of the [Cl] is (zero) (one) (circle one) order of the $[O_3]$ is (zero)(one) (circle one)

For the following reaction give the equation for the equilibrium constant (K) in concentrations of the 2. reagents given. You should assume that the gases dissolve so that you can give K in concentrations of the units of molarity. (6 pts)

 $C(s) + H_2O(g) \rightarrow CO(g) + H_2(g)$

K =

For the reaction given, set up the ICE table for a reaction in which the reactant gases are mixed in a 3. constant volume of an inert solvent with no products present initially: (1 pt each blank, 9 pts total)

 $CO(g) + Cl_2(g) \rightarrow COCl_2(g)$

If the initial concentration of the CO (g) is 0.415 M, and the initial concentration of Cl_2 (g) is 0.543 M. If at equilibrium, the concentration of the CO Cl₂ is 0.098 M. Show the initial, change and equilibrium concentrations for all 3 reagents.

	[CO]	[Cl ₂]	[COCl ₂]
Initial			
Change			
Equilibrium			

Quiz IV General Chemistry II Lecture Dr. Hahn 20 pts 3/1/13 F form B 9:30 am quiz #_____

Name ______(print) Name ______(sign) Please show all work for full credit & to get partial credit. (suggestion: A guess is better than no answer.)

4. For the following overall reaction (not reaction mechanism step, the overall reaction), Given the concentrations and rates, give the order of the reactant by circling the order for the reagent given. You should assume an irreversible reaction. (note: I made up these reactions to illustrate the point so the reactions as given may not go experimentally as written.) (3 pts each, 6 pts total)

 $H_2 + 2 Br_2 \rightarrow 2 HBr + 2 Br^{-1}$

[H ₂]	[Br ₂]	rate
3	3	1
3	6	2
6	3	1

order of the $[H_2]$ is (zero) (one) (circle one) order of the $[Br_2]$ is (zero)(one) (circle one)

5. For the following reaction give the equation for the equilibrium constant (K) in concentrations of the reagents given. You should assume that the gases dissolve so that you can give K in concentrations of the units of molarity. (6 pts)

 $2 \operatorname{BrNO}(g) \rightarrow 2 \operatorname{NO}(g) + \operatorname{Br}_2(g)$

 $K \;=\;$

6. For the reaction given, set up the ICE table for a reaction in which the reactant gases are mixed in a constant volume of an inert solvent with no products present initially: (1 pt each blank, 9 pts total)

 $N_2(g) + 3H_2(g) \rightarrow 2 NH_3(g)$

If the initial concentration of the N_2 (g) is 0.985 M, and the initial concentration of H_2 (g) is 0.996 M. If at equilibrium, the concentration of the NH_3 is 0.057 M. Show the initial, change and equilibrium concentrations for all 3 reagents .

	[N ₂]	[H ₂]	[NH ₃]
Initial			
Change			
Equilibrium			

Quiz IV	General Chemistry II Lecture	Dr. Hahn 20 pts	3/1/13 F form A	11:30 am	quiz #
•	2	1			1

Name ______(print) Name ______(sign) Please show all work for full credit & to get partial credit. (suggestion: A guess is better than no answer.)

7. For the following overall reaction (not reaction mechanism step, the overall reaction), Given the concentrations and rates, give the order of the reactant by circling the order for the reagent given. You should assume an irreversible reaction. (note: I made up these reactions to illustrate the point so the reactions as given may not go experimentally as written.) (3 pts each, 6 pts total)

order of the $[H_2]$ is (zero) (one) (circle one) order of the [Cl] is (zero)(one) (circle one)

8. For the following reaction give the equation for the equilibrium constant (K) in concentrations of the reagents given. You should assume that the gases dissolve so that you can give K in concentrations of the units of molarity. (6 pts)

$$\text{CO}_3^{-2}(\text{aq}) + \text{H}_2\text{O}(\text{l}) \rightarrow \text{HCO}^{3-}(\text{aq}) + \text{OH}^{-}(\text{aq})$$

K =

9. For the reaction given, set up the ICE table for a reaction in which the reactant gases are mixed in a constant volume of an inert solvent with no products present initially: (1 pt each blank, 9 pts total)

 $2 \operatorname{SO}_2(g) + \operatorname{O}_2(g) \rightarrow 2 \operatorname{SO}_3(g)$

If the initial concentration of the SO₂ (g) is 0.117 M, and the initial concentration of O₂ (g) is 0.223 M. If at equilibrium, the concentration of the SO₃ is 0.043 M. Show the initial, change and equilibrium concentrations for all 3 reagents .

	[SO ₂]	[O ₂]	[SO ₃]
Initial			
Change			
Equilibrium			

Quiz IV General Chemistry II Lecture Dr. Hahn 20 pts 3/1/13 F form B 11:30 am quiz #_____

Name ______(print) Name ______(sign) Please show all work for full credit & to get partial credit. (suggestion: A guess is better than no answer.)

10. For the following overall reaction (not reaction mechanism step, the overall reaction), Given the concentrations and rates, give the order of the reactant by circling the order for the reagent given. You should assume an irreversible reaction. (note: I made up these reactions to illustrate the point so the reactions as given may not go experimentally as written.) (3 pts each, 6 pts total)

2 NH₃ (aq) + OCl⁻ (aq) \rightarrow N₂H₄ (aq) + H₂O (l) + Cl⁻ (aq) [NH₃] [OCl⁻] rate

order of the [NH₃] is (zero) (one) (circle one) order of the [OCl⁻] is (zero)(one) (circle one)

11. For the following reaction give the equation for the equilibrium constant (K) in concentrations of the reagents given. You should assume that the gases dissolve so that you can give K in concentrations of the units of molarity. (6 pts)

$$N_2(g) + 3H_2(g) \rightarrow 2 \text{ NH}_3(g)$$

K =

12. For the reaction given, set up the ICE table for a reaction in which the reactant gases are mixed in a constant volume of an inert solvent with no products present initially: (1 pt each blank, 9 pts total)

 $N_2(g) + O_2(g) \rightarrow 2 NO(g)$

If the initial concentration of the N_2 (g) is 0.789 M, and the initial concentration of O_2 (g) is 0.899 M. If at equilibrium, the concentration of the NO is 0.230 M. Show the initial, change and equilibrium concentrations for all 3 reagents .

[N ₂]	[O ₂]	[NO]
<u> </u>	N ₂]	N ₂] [O ₂]