

Lecture Presentation

Thermodynamics: Entropy, Free Energy, and Equilibrium

John E. McMurry Robert C. Fay

Spontaneous Processes

Spontaneous Process: A process that, once started, proceeds on its own without a continuous external influence

Spontaneous Processes

The rusting of these wheel rims is a slow but spontaneous reaction.

Reaction progress \qquad

Enthalpy, Entropy, and Spontaneous
 Processes

State Function: A function or property whose value depends only on the present state, or condition, of the system, not on the path used to arrive at that state

Enthalpy Change ($\Delta \boldsymbol{H}$): The heat change in a reaction or process at constant pressure;
$\Delta H=\Delta E+P \Delta V$
Entropy (S): The amount of molecular randomness in a system

Enthalpy, Entropy, and Spontaneous Processes

Enthalpy, Entropy, and Spontaneous Processes

Exothermic:
$\mathrm{CH}_{4}(g)+2 \mathrm{O}_{2}(g) \longrightarrow \mathrm{CO}_{2}(g)+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \quad \Delta H^{\circ}=-890.3 \mathrm{~kJ}$
Endothermic:

$$
\begin{array}{lr}
\mathrm{H}_{2} \mathrm{O}(s) \longrightarrow \mathrm{H}_{2} \mathrm{O}(\Lambda) & \Delta H_{\text {fusion }}=+6.01 \mathrm{~kJ} \\
\mathrm{H}_{2} \mathrm{O}(\Lambda) \longrightarrow \mathrm{H}_{2} \mathrm{O}(g) & \Delta H_{\text {vap }}=+40.7 \mathrm{~kJ} \\
\mathrm{~N}_{2} \mathrm{O}_{4}(g) \longrightarrow 2 \mathrm{NO}_{2}(g) & \Delta H^{\circ}=+55.3 \mathrm{~kJ} \\
\mathrm{NaCl}(s) \xrightarrow{\mathrm{H}_{2} \mathrm{O}} \mathrm{Na}+(a q)+\mathrm{Cl}-(\mathrm{aq}) & \Delta H^{\circ}=+3.88 \mathrm{~kJ}
\end{array}
$$

Enthalpy, Entropy, and Spontaneous Processes

Enthalpy, Entropy, and Spontaneous Processes

Enthalpy, Entropy, and Spontaneous Processes

Disruption of the crystal increases the entropy, but the hydration process decreases the entropy. For the dissolution of NaCl , the net effect is an entropy increase.

Entropy and Probability

Entropy and Probability

(a) The perfectly ordered
"heads-up" structure.

20 "heads"
0 "tails"

(b) The molecules arranged randomly in one of the 2^{20} ways in which a disordered structure can be obtained.

$S=k \ln W$

$k=$ Boltzmann's constant. $=1.38 \times 10^{-23} \mathrm{~J} / \mathrm{K}$

$W=$ The number of ways that the state can be achieved.

9 "heads"
11 "tails"

Entropy and Temperature

Third Law of Thermodynamics: The entropy of a perfectly ordered crystalline substance at 0 K is zero.

Lower temperature:
-Lesser molecular speeds

- Narrower distribution of individual
kinetic energies
- Less randomness
- Lower entropy

Entropy and Temperature

Standard Molar Entropies and Standard Entropies of Reaction

Standard Molar Entropy (\mathbf{S}° : The entropy of 1 mole of a pure substance at 1 atm pressure and a specified temperature.

TABLE 17.1 Standard Molar Entropies for Some Common Substances at $25^{\circ} \mathrm{C}$

Substance	Formula	$S^{\circ}[\mathbf{J} /(\mathbf{K} \cdot \mathbf{m o l})]$	Substance	Formula	$S^{\circ}[\mathbf{J} /(\mathbf{K} \cdot \mathbf{m o l})]$
Gases			Liquids		
Acetylene	$\mathrm{C}_{2} \mathrm{H}_{2}$	200.8	Acetic acid	$\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}$	160
Ammonia	NH_{3}	192.3	Ethanol	$\mathrm{CH}_{3} \mathrm{CH} \mathrm{H}_{2} \mathrm{OH}$	161
Carbon dioxide	CO_{2}	213.6	Methanol	$\mathrm{CH}_{3} \mathrm{OH}$	127
Carbon monoxide	CO	197.6	Water	$\mathrm{H}_{2} \mathrm{O}$	69.9
Ethylene	$\mathrm{C}_{2} \mathrm{H}_{4}$	219.5	Solids		
Hydrogen	H_{2}	130.6	Calcium carbonate	CaCO_{3}	91.7
Methane	CH_{4}	186.2	Calcium oxide	CaO	38.1
Nitrogen	N_{2}	191.5	Diamond	C	2.4
Nitrogen dioxide	NO_{2}	240.0	Graphite	C	5.7
Dinitrogen tetroxide	$\mathrm{N}_{2} \mathrm{O}_{4}$	304.3	Iron	Fe°	27.3
Oxygen	O_{2}	205.0	Iron(III) oxide	$\mathrm{Fe}_{2} \mathrm{O}_{3}$	87.4

Standard Molar Entropies and Standard Entropies of Reaction

$$
\begin{gathered}
\Delta S^{\circ}=S^{\circ}(\text { products })-S^{\circ}(\text { reactants }) \\
a \mathrm{~A}+b \mathrm{~B} \longrightarrow c \mathrm{C}+d \mathrm{D} \\
\Delta S^{\circ}=\underbrace{\left[c S^{\circ}(\mathrm{C})+d S^{\circ}(\mathrm{D})\right]}_{\text {Products }}-\underbrace{\left[a S^{\circ}(\mathrm{A})+b S^{\circ}(\mathrm{B})\right]}_{\text {Reactants }}
\end{gathered}
$$

Standard Molar Entropies and Standard Entropies of Reaction

Using standard entropies, calculate the standard entropy change for the decomposition of $\mathrm{N}_{2} \mathrm{O}_{4}$.

$$
\begin{aligned}
& \mathrm{N}_{2} \mathrm{O}_{4}(g) \longrightarrow 2 \mathrm{NO}_{2}(g) \\
& \Delta S^{\circ}=2 S^{\circ}\left(\mathrm{NO}_{2}(g)\right)-S^{\circ}\left(\mathrm{N}_{2} \mathrm{O}_{4}(g)\right) \\
& \Delta S^{\circ}=(2 \mathrm{~mol})\left(240.0 \frac{\mathrm{~J}}{\mathrm{~K} \mathrm{~mol}}\right)-(1 \mathrm{~mol})\left(304.3 \frac{\mathrm{~J}}{\mathrm{~K} \mathrm{~mol}}\right) \\
& \Delta S^{\circ}=175.7 \mathrm{~J} / \mathrm{K}
\end{aligned}
$$

Entropy and the Second Law of Thermodynamics

First Law of Thermodynamics: In any process, spontaneous or nonspontaneous, the total energy of a system and its surroundings is constant.

Second Law of Thermodynamics: In any spontaneous process, the total entropy of a system and its surroundings always increases.

Entropy and the Second Law of Thermodynamics

$$
\begin{aligned}
& \Delta S_{\text {total }}=\Delta S_{\text {system }}+\Delta S_{\text {surroundings }} \\
& \quad \text { or } \\
& \Delta S_{\text {totaa }}=\Delta S_{\text {sys }}+\Delta S_{\text {surr }}
\end{aligned}
$$

$\Delta S_{\text {total }}>0$ The reaction is spontaneous.
$\Delta S_{\text {total }}<0$ The reaction is nonspontaneous.
$\Delta S_{\text {total }}=0 \quad$ The reaction mixture is at equilibrium.

Entropy and the Second Law of Thermodynamics

(a) When an exothermic reaction occurs in the system ($\Delta H<0$), the surroundings gains heat and its entropy increases ($\Delta S_{\text {surr }}>0$).

(b) When an endothermic reaction occurs in the system ($\Delta H>0$), the surroundings loses heat and its entropy decreases $\left(\Delta S_{\text {surr }}<0\right)$.
$\Delta S_{\text {surr }} \alpha-\Delta H$

$\Delta S_{\text {surf }}=\frac{-\Delta H}{T}$

Free Energy

Free Energy: $G=H-T S$

$$
\Delta G=\Delta H-T \Delta S
$$

$$
\text { Using: } \Delta S_{\text {total }}=\Delta S_{\text {sys }}+\Delta S_{\text {surr }}
$$

$$
\Delta S_{\text {surr }}=\frac{-\Delta H}{T}
$$

$$
\Delta S=\Delta S_{\mathrm{sys}}
$$

$$
\Delta G=\Delta H-T \Delta S=-T \Delta S_{\text {total }}
$$

Free Energy

Using the second law and $\Delta G=\Delta H-T \Delta S=-T \Delta S_{\text {total }}$
$\Delta \boldsymbol{G}<\mathbf{0} \quad$ The reaction is spontaneous.
$\Delta G>0$
The reaction is nonspontaneous.
$\Delta \boldsymbol{G}=\mathbf{0} \quad$ The reaction mixture is at equilibrium.

Free Energy

TABLE 17.2 Signs of Enthalpy, Entropy, and Free-Energy Changes and Reaction Spontaneity for a

 Reaction at Constant Temperature and Pressure| ΔH | ΔS | $\Delta G=\Delta H-T \Delta S$ | Reaction Spontaneity | Example |
| :---: | :---: | :---: | :---: | :---: |
| - | + | - | Spontaneous at all temperatures | $2 \mathrm{NO}_{2}(g) \longrightarrow \mathrm{N}_{2}(g)+2 \mathrm{O}_{2}(g)$ |
| + | - | + | Nonspontaneous at all temperatures | $3 \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{O}_{3}(\mathrm{~g})$ |
| - | - | - or + | Spontaneous at low temperatures where ΔH outweighs $T \Delta S$ | $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})$ |
| | | | Nonspontaneous at high temperatures where $T \Delta S$ outweighs ΔH | |
| + | + | - or + | Spontaneous at high temperatures where $T \Delta S$ outweighs ΔH | $2 \mathrm{HgO}(s) \longrightarrow 2 \mathrm{Hg}(l)+\mathrm{O}_{2}(g)$ |
| | | | Nonspontaneous at low temperatures where ΔH outweighs $T \Delta S$ | |

Standard Free-Energy Changes for Reactions

Thermodynamic Standard State: Most stable form of a substance at 1 atm pressure and at a specified temperature, usually $25^{\circ} \mathrm{C} ; 1 \mathrm{M}$ concentration for all substances in solution

$$
\Delta G^{\circ}=\Delta H^{\circ}-T \Delta S^{\circ}
$$

Standard Free-Energy Changes for Reactions

Calculate the standard free-energy change at $25^{\circ} \mathrm{C}$ for the Haber synthesis of ammonia using the given values for the standard enthalpy and standard entropy changes:

$$
\begin{gathered}
\mathrm{N}_{2}(g)+3 \mathrm{H}_{2}(g) \longrightarrow 2 \mathrm{NH}_{3}(g) \Delta H^{\circ}=-92.2 \mathrm{~kJ} \\
\Delta S^{\circ}=-198.7 \mathrm{~J} / \mathrm{K} \\
\Delta G^{\circ}=\Delta H^{\circ}-T \Delta S^{\circ} \\
\Delta G^{\circ}=-92.2 \mathrm{~kJ}-\left(298 \mathrm{~K} \times \frac{-198.7 \mathrm{~J}}{\mathrm{~K}} \times \frac{1 \mathrm{~kJ}}{1000 \mathrm{~J}}\right)=-33.0 \mathrm{~kJ}
\end{gathered}
$$

Standard Free Energies of Formation

$$
\Delta G^{\circ}=\Delta G_{f}^{\circ}(\text { products })-\Delta G_{f}^{\circ}(\text { reactants })
$$

$$
a \mathrm{~A}+b \mathrm{~B} \longrightarrow c \mathrm{C}+d \mathrm{D}
$$

$\Delta G^{\circ}=\underbrace{\left[c \Delta G^{\circ}{ }_{f}(C)+d \Delta G^{\circ}(D)\right]}-\underbrace{\left[a \Delta G_{f}^{\circ}(A)+b \Delta G^{\circ}(B)\right]}$
 Products

Standard Free Energies of Formation

TABLE 17.3 Standard Free Energies of Formation for Some Common Substances at $25^{\circ} \mathrm{C}$

Substance	Formula	$\Delta \boldsymbol{G}_{\mathbf{f}}{ }^{\circ}[\mathbf{k J} / \mathbf{m o l}]$	Substance	Formula	$\boldsymbol{\Delta} \boldsymbol{G}_{\mathrm{f}}{ }^{\circ}[\mathbf{k J} / \mathbf{m o l}]$
Gases			Liquids		
Acetylene	$\mathrm{C}_{2} \mathrm{H}_{2}$	209.9	Acetic acid	$\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}$	-390
Ammonia	NH_{3}	-16.5	Ethanol	$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$	-174.9
Carbon dioxide	CO_{2}	-394.4	Methanol	$\mathrm{CH}_{3} \mathrm{OH}$	-166.6
Carbon monoxide	CO	-137.2	Water	$\mathrm{H}_{2} \mathrm{O}$	-237.2
Ethylene	$\mathrm{C}_{2} \mathrm{H}_{4}$	68.1	Solids		
Hydrogen	H_{2}	0	Calcium carbonate	CaCO_{3}	-1129.1
Methane	CH_{4}	-50.8	Calcium oxide	CaO	-603.3
Nitrogen	N_{2}	0	Diamond	C	2.9
Nitrogen dioxide	NO_{2}	51.3	Graphite	C	0
Dinitrogen tetroxide	$\mathrm{N}_{2} \mathrm{O}_{4}$	99.8	Iron(III) oxide	$\mathrm{Fe}_{2} \mathrm{O}_{3}$	-742.2

Standard Free Energies of Formation

Using table values, calculate the standard free-energy change at $25^{\circ} \mathrm{C}$ for the reduction of iron(III) oxide with carbon monoxide:

$$
\begin{aligned}
& \mathrm{Fe}_{2} \mathrm{O}_{3}(s)+3 \mathrm{CO}(g) \longrightarrow 2 \mathrm{Fe}(\mathrm{~s})+3 \mathrm{CO}_{2}(g) \\
& \Delta G^{\circ}= {\left[2 \Delta \mathrm{G}_{\mathrm{f}}^{\circ}(\mathrm{Fe}(s))+3 \Delta \mathrm{G}_{\mathrm{f}}^{\circ}\left(\mathrm{CO}_{2}(g)\right)\right] } \\
&-\left[1 \Delta \mathrm{G}_{\mathrm{f}}^{\circ}\left(\mathrm{Fe}_{2} \mathrm{O}_{3}(s)\right)+3 \Delta \mathrm{G}_{\mathrm{f}}^{\circ}(\mathrm{CO}(\mathrm{~g}))\right] \\
& \Delta G^{\circ}= {[(2 \mathrm{~mol})(0 \mathrm{~kJ} / \mathrm{mol})+(3 \mathrm{~mol})(-394.4 \mathrm{~kJ} / \mathrm{mol})] } \\
& \Delta G^{\circ}=-[(1 \mathrm{~mol})(-742.2 \mathrm{~kJ} / \mathrm{mol})+(3 \mathrm{~mol})(-137.2 \mathrm{~kJ} / \mathrm{mol})]
\end{aligned}
$$

Free Energy Changes and the Reaction Mixture

$$
\Delta G=\Delta G^{\circ}+R T \ln Q
$$

$\Delta G=$ Free-energy change under nonstandard conditions.

For the Haber synthesis of ammonia:

$$
\mathrm{N}_{2}(g)+3 \mathrm{H}_{2}(g) \rightleftharpoons 2 \mathrm{NH}_{3}(g) \quad Q_{\mathrm{p}}=\frac{\left(P_{\mathrm{NH}_{3}}\right)^{2}}{\left(P_{\mathrm{N}_{2}}\right)\left(P_{\mathrm{H}_{2}}\right)^{3}}
$$

Free Energy Changes and the Reaction Mixture

Calculate ΔG for the formation of ethylene $\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)$ from carbon and hydrogen at $25^{\circ} \mathrm{C}$ when the partial pressures are $100 \mathrm{~atm} \mathrm{H}_{2}$ and $0.10 \mathrm{~atm} \mathrm{C}_{2} \mathrm{H}_{4}$.

$$
2 \mathrm{C}(s)+2 \mathrm{H}_{2}(g) \rightleftharpoons \mathrm{C}_{2} \mathrm{H}_{4}(g) \quad \Delta G^{\circ}=68.1 \mathrm{~kJ}
$$

Use:

$$
\Delta G=\Delta G^{\circ}+R T \ln Q
$$

$$
Q_{\mathrm{p}}=\frac{P_{\mathrm{C}_{2} \mathrm{H}_{4}}}{\left(P_{\mathrm{H}_{2}}\right)^{2}}
$$

Free Energy Changes and the Reaction Mixture

Calculate In Q :

$$
\ln \left(\frac{0.10}{1002}\right)=-11.51
$$

Calculate DG:
$\Delta G=\Delta G^{\circ}+R T \ln Q$
$=68.1 \mathrm{~kJ} / \mathrm{mol}+\left(8.314 \frac{\mathrm{~J}}{\mathrm{~K} \mathrm{~mol}}\right)(298 \mathrm{~K})(-11.51)\left(\frac{1 \mathrm{~kJ}}{1000 \mathrm{~J}}\right)$
$\Delta G=39.6 \mathrm{~kJ} / \mathrm{mol}$

Free Energy and Chemical Equilibrium

$$
\Delta G=\Delta G^{\circ}+R T \ln Q
$$

- When the reaction mixture is mostly reactants:

$$
Q \ll 1 \quad R T \ln Q \ll 0 \quad \Delta G<0
$$

The total free energy decreases as the reaction proceeds spontaneously in the forward direction.

- When the reaction mixture is mostly products:

$$
Q \gg 1 \quad R T \ln Q \gg 0 \quad \Delta G>0
$$

The total free energy decreases as the reaction proceeds spontaneously in the reverse direction.

Free Energy and Chemical Equilibrium

Beginning with pure reactants, the free energy decreases $(\Delta G<0)$ as the system moves toward equilibrium.

Beginning with pure products, the free energy also decreases ($\Delta G<0$) as the system moves toward equilibrium.

Free Energy and Chemical Equilibrium

$$
\begin{gathered}
\qquad \Delta G=\Delta G^{\circ}+R T \ln Q \\
\text { At equilibrium, } \Delta G=0 \text { and } Q=K .
\end{gathered}
$$

$$
\Delta G^{\circ}=-R T \ln K
$$

TABLE 17.4 Relationship Between the Standard Free-Energy Change and the Equilibrium Constant for a Reaction: $\Delta \mathbf{G}^{\circ}=-R T \ln K$

$\boldsymbol{\Delta} \boldsymbol{G}^{\circ}$	$\ln \boldsymbol{K}$	\boldsymbol{K}	Comment
$\Delta G^{\circ}<0$	$\ln K>0$	$K>1$	The equilibrium mixture is mainly products.
$\Delta G^{\circ}>0$	$\ln K<0$	$K<1$	The equilibrium mixture is mainly reactants.
$\Delta G^{\circ}=0$	$\ln K=0$	$K=1$	The equilibrium mixture contains comparable
			amounts of reactants and products.

Free Energy and Chemical Equilibrium

Calculate K_{p} at $25^{\circ} \mathrm{C}$ for the following reaction:

$$
\mathrm{CaCO}_{3}(s) \rightleftharpoons \mathrm{CaO}(s)+\mathrm{CO}_{2}(g)
$$

Calculate ΔG° :

$$
\begin{aligned}
\Delta G^{\circ}= & {\left[\Delta \mathrm{G}_{\mathrm{f}}^{\circ}(\mathrm{CaO}(s))+\Delta \mathrm{G}_{\mathrm{f}}^{\circ}\left(\mathrm{CO}_{2}(g)\right)\right]-\left[\Delta \mathrm{G}_{\mathrm{f}}^{\circ}\left(\mathrm{CaCO}_{3}(\mathrm{~s})\right)\right] } \\
= & {[(1 \mathrm{~mol})(-603.3 \mathrm{~kJ} / \mathrm{mol})+(1 \mathrm{~mol})(-394.4 \mathrm{~kJ} / \mathrm{mol})] } \\
& -[(1 \mathrm{~mol})(-1129.1 \mathrm{~kJ} / \mathrm{mol})] \\
\Delta G^{\circ}= & +131.4 \mathrm{~kJ} / \mathrm{mol}
\end{aligned}
$$

Free Energy and Chemical Equilibrium

Calculate In K :

$$
\begin{aligned}
& \Delta G^{\circ}=-R T \ln K \\
& \ln K=\frac{-\Delta G^{\circ}}{R T}=\frac{-131.4 \mathrm{~kJ} / \mathrm{mol}}{\left(8.314 \frac{\mathrm{~J}}{\mathrm{~K} \mathrm{~mol}}\right)(298 \mathrm{~K})\left(\frac{1 \mathrm{~kJ}}{1000 \mathrm{~J}}\right)} \\
& \ln K=-53.04
\end{aligned}
$$

Calculate K :

$$
K=e^{-53.04}=9.2 \times 10^{-24}
$$

