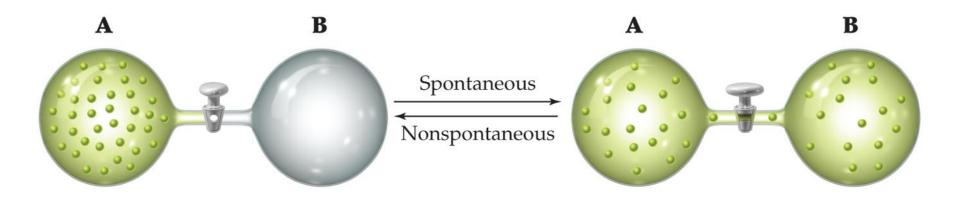


Lecture Presentation

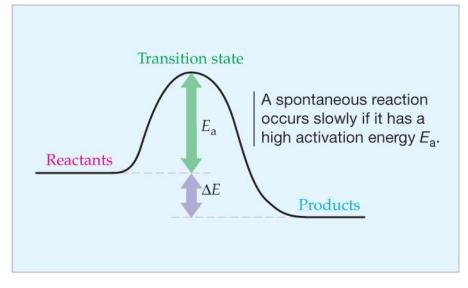

Chapter 17

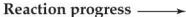
Thermodynamics: Entropy, Free Energy, and Equilibrium

John E. McMurry Robert C. Fay

Spontaneous Processes

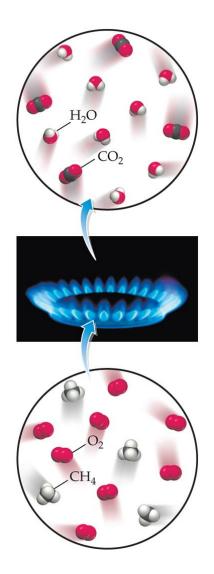
Spontaneous Process: A process that, once started, proceeds on its own without a continuous external influence




Spontaneous Processes

The rusting of these wheel rims is a slow but spontaneous reaction.

Potential energy *→*

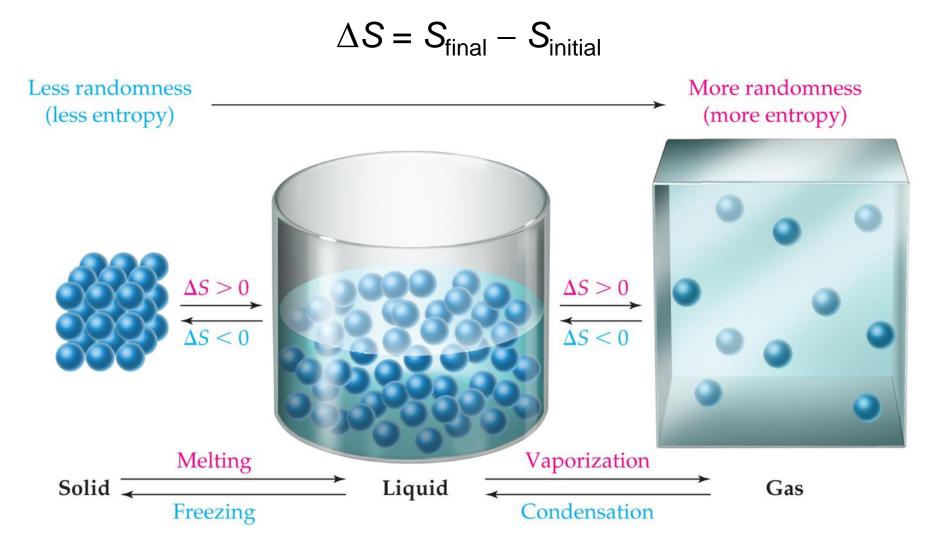

Enthalpy, Entropy, and Spontaneous Processes

State Function: A function or property whose value depends only on the present state, or condition, of the system, not on the path used to arrive at that state

Enthalpy Change (Δ *H***)**: The heat change in a reaction or process at constant pressure; $\Delta H = \Delta E + P\Delta V$

Entropy (S): The amount of molecular randomness in a system

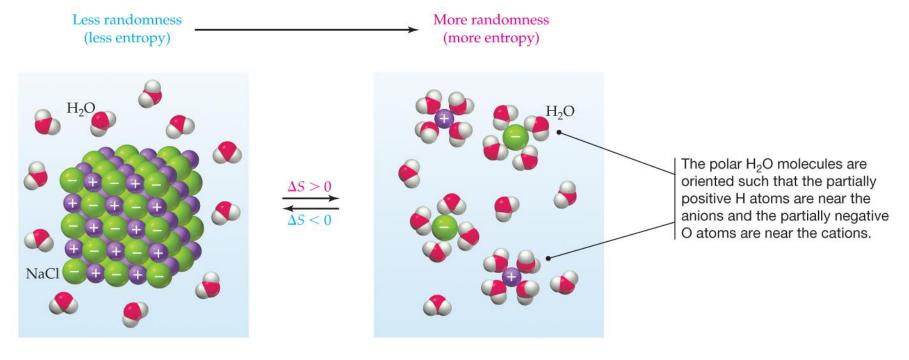
Enthalpy, Entropy, and Spontaneous Processes


Enthalpy, Entropy, and Spontaneous Processes

Exothermic:

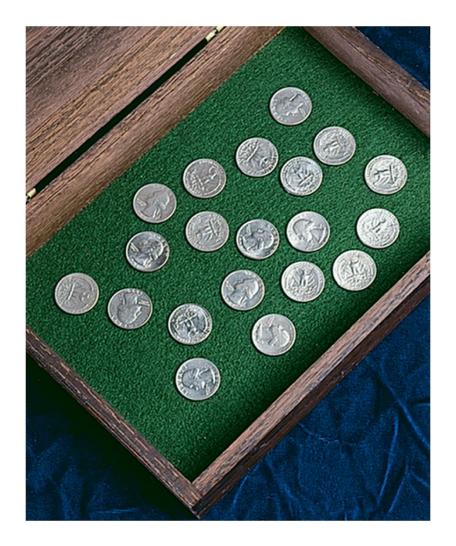
 $CH_4(g) + 2 O_2(g) \longrightarrow CO_2(g) + 2 H_2O(I) \quad \Delta H^\circ = -890.3 \text{ kJ}$ Endothermic:

 $H_2O(s) \longrightarrow H_2O(l) \qquad \Delta H_{fusion} = +6.01 \text{ kJ}$ $H_2O(l) \longrightarrow H_2O(g) \qquad \Delta H_{vap} = +40.7 \text{ kJ}$ $N_2O_4(g) \longrightarrow 2 \text{ NO}_2(g) \qquad \Delta H^\circ = +55.3 \text{ kJ}$ $NaCl(s) \xrightarrow{H_2O} Na+(aq) + Cl-(aq) \qquad \Delta H^\circ = +3.88 \text{ kJ}$


Enthalpy, Entropy, and Spontaneous Processes

Enthalpy, Entropy, and Spontaneous Processes

Enthalpy, Entropy, and Spontaneous Processes



 $NaCl(s) + H_2O(l)$

 $Na^+(aq) + Cl^-(aq)$

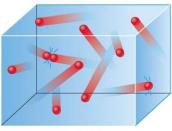
Disruption of the crystal increases the entropy, but the hydration process decreases the entropy. For the dissolution of NaCl, the net effect is an entropy increase.

Entropy and Probability

Entropy and Probability

(a) The perfectly ordered "heads-up" structure.

(b) The molecules arranged randomly in one of the 2^{20} ways in which a disordered structure can be obtained.


$$S = k \ln W$$

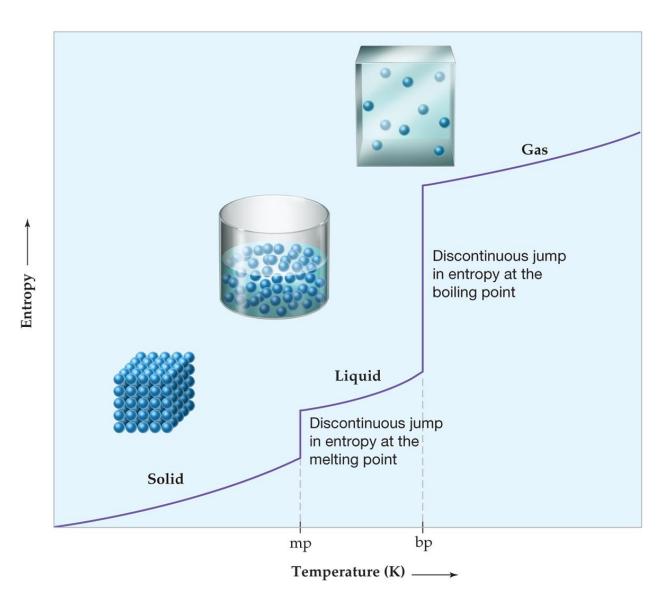
k = Boltzmann's constant. = 1.38 × 10⁻²³ J/K

W = The number of ways that the state can be achieved.

Entropy and Temperature

Third Law of Thermodynamics: The entropy of a perfectly ordered crystalline substance at 0 K is zero.

Higher temperature:

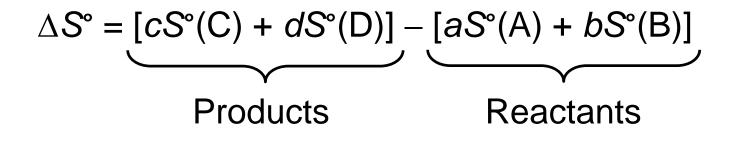

- •Greater molecular speeds
- Broader distribution of individual
- kinetic energies
- More randomness
- Higher entropy

Lower temperature: • Lesser molecular speeds • Narrower distribution of individual kinetic energies • Less randomness

• Lower entropy

Entropy and Temperature

Standard Molar Entropies and Standard Entropies of Reaction


Standard Molar Entropy (S°): The entropy of 1 mole of a pure substance at 1 atm pressure and a specified temperature.

Substance	Formula	$S^{\circ}[J/(K \cdot mol)]$	Substance	Formula	$S^{\circ}[J/(K \cdot mol)]$
Gases			Liquids		
Acetylene	C_2H_2	200.8	Acetic acid	CH ₃ CO ₂ H	160
Ammonia	NH ₃	192.3	Ethanol	CH ₃ CH ₂ OH	161
Carbon dioxide	CO ₂	213.6	Methanol	CH ₃ OH	127
Carbon monoxide	CO	197.6	Water	H_2O	69.9
Ethylene	C_2H_4	219.5	Solids		
Hydrogen	H ₂	130.6	Calcium carbonate	CaCO ₃	91.7
Methane	CH_4	186.2	Calcium oxide	CaO	38.1
Nitrogen	N_2	191.5	Diamond	С	2.4
Nitrogen dioxide	NO ₂	240.0	Graphite	С	5.7
Dinitrogen tetroxide	N_2O_4	304.3	Iron	Fe	27.3
Oxygen	O ₂	205.0	Iron(III) oxide	Fe ₂ O ₃	87.4

Standard Molar Entropies and Standard Entropies of Reaction

 $\Delta S^{\circ} = S^{\circ}(\text{products}) - S^{\circ}(\text{reactants})$

$$aA + bB \longrightarrow cC + dD$$

Standard Molar Entropies and Standard Entropies of Reaction

Using standard entropies, calculate the standard entropy change for the decomposition of N_2O_4 .

$$N_2O_4(g) \longrightarrow 2 NO_2(g)$$

$$\Delta S^{\circ} = 2 S^{\circ}(NO_{2}(g)) - S^{\circ}(N_{2}O_{4}(g))$$
$$\Delta S^{\circ} = (2 \text{ mol}) \left(240.0 \frac{J}{\text{K mol}} \right) - (1 \text{ mol}) \left(304.3 \frac{J}{\text{K mol}} \right)$$
$$\Delta S^{\circ} = \boxed{175.7 \text{ J/K}}$$

Entropy and the Second Law of Thermodynamics

First Law of Thermodynamics: In any process, spontaneous or nonspontaneous, the total energy of a system and its surroundings is constant.

Second Law of Thermodynamics: In any *spontaneous* process, the total entropy of a system and its surroundings always increases.

Entropy and the Second Law of Thermodynamics


$$\Delta S_{\text{total}} = \Delta S_{\text{system}} + \Delta S_{\text{surroundings}}$$

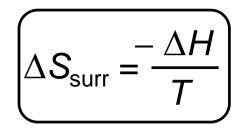
or
$$\Delta S_{\text{total}} = \Delta S_{\text{sys}} + \Delta S_{\text{surr}}$$

$\Delta S_{total} > 0$ The reaction is spontaneous.

$\Delta S_{total} < 0$ The reaction is nonspontaneous.

$\Delta S_{\text{total}} = 0$ The reaction mixture is at equilibrium.

Entropy and the Second Law of Thermodynamics


(a) When an exothermic reaction occurs in the system ($\Delta H < 0$), the surroundings gains heat and its entropy increases ($\Delta S_{surr} > 0$).

(b) When an endothermic reaction occurs in the system ($\Delta H > 0$), the surroundings loses heat and its entropy decreases ($\Delta S_{surr} < 0$).

 $\Delta S_{surr} \alpha - \Delta H$

Free Energy

Free Energy: G = H - TS $\Delta G = \Delta H - T \Delta S$ Using: $\Delta S_{\text{total}} = \Delta S_{\text{sys}} + \Delta S_{\text{surr}}$ $\Delta S_{surr} = \frac{-\Delta H}{T}$ $\Delta S = \Delta S_{\rm svs}$

$$\Delta G = \Delta H - T \Delta S = -T \Delta S_{\text{total}}$$

Free Energy

Using the second law and $\Delta G = \Delta H - T \Delta S = -T \Delta S_{total}$

- $\Delta G < 0$ The reaction is spontaneous.
- $\Delta G > 0$ The reaction is nonspontaneous.
- $\Delta G = 0$ The reaction mixture is at equilibrium.

Free Energy

TABLE 17.2Signs of Enthalpy, Entropy, and Free-Energy Changes and Reaction Spontaneity for a
Reaction at Constant Temperature and Pressure

ΔH	ΔS	$\Delta G = \Delta H - T \Delta S$	Reaction Spontaneity	Example
_	+	-	Spontaneous at all temperatures	$2 \operatorname{NO}_2(g) \longrightarrow \operatorname{N}_2(g) + 2 \operatorname{O}_2(g)$
+	-	+	Nonspontaneous at all temperatures	$3 O_2(g) \longrightarrow 2 O_3(g)$
-	-	- or +	Spontaneous at low temperatures where ΔH outweighs $T\Delta S$	$N_2(g) + 3 H_2(g) \longrightarrow 2 NH_3(g)$
			Nonspontaneous at high temperatures where $T\Delta S$ outweighs ΔH	
+	+	- or +	Spontaneous at high temperatures where $T\Delta S$ outweighs ΔH	$2 \operatorname{HgO}(s) \longrightarrow 2 \operatorname{Hg}(l) + O_2(g)$
			Nonspontaneous at low temperatures where ΔH outweighs $T\Delta S$	

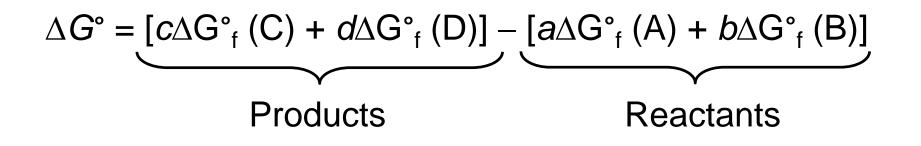
Standard Free-Energy Changes for Reactions

Thermodynamic Standard State: Most stable form of a substance at 1 atm pressure and at a specified temperature, usually 25 °C; 1 M concentration for all substances in solution

$$\Delta G^{\circ} = \Delta H^{\circ} - T \Delta S^{\circ}$$

Standard Free-Energy Changes for Reactions

Calculate the standard free-energy change at 25 °C for the Haber synthesis of ammonia using the given values for the standard enthalpy and standard entropy changes:


$$N_2(g) + 3 H_2(g) \longrightarrow 2 NH_3(g) \Delta H^\circ = -92.2 kJ$$

 $\Delta S^\circ = -198.7 J/k$

$$\Delta G^{\circ} = \Delta H^{\circ} - T\Delta S^{\circ}$$

$$\Delta G^{\circ} = -92.2 \text{ kJ} - \left(298 \text{ K} \times \frac{-198.7 \text{ J}}{\text{K}} \times \frac{1 \text{ kJ}}{1000 \text{ J}}\right) = \left[-33.0 \text{ kJ}\right]$$

Standard Free Energies of Formation

 $\Delta G^{\circ} = \Delta G^{\circ}_{f}$ (products) $-\Delta G^{\circ}_{f}$ (reactants)

 $aA + bB \longrightarrow cC + dD$

Standard Free Energies of Formation

TABLE 17.3 Standard Free Energies of Formation for Some Common Substances at 25 °C					
Substance	Formula	$\Delta G_{ m f}^{\circ}[m kJ/mol]$	Substance	Formula	$\Delta G_{\rm f}^{\circ}[{ m kJ/mol}]$
Gases			Liquids		
Acetylene	C_2H_2	209.9	Acetic acid	CH ₃ CO ₂ H	-390
Ammonia	NH ₃	-16.5	Ethanol	CH ₃ CH ₂ OH	-174.9
Carbon dioxide	CO_2	-394.4	Methanol	CH ₃ OH	-166.6
Carbon monoxide	CO	-137.2	Water	H ₂ O	-237.2
Ethylene	C_2H_4	68.1	Solids		
Hydrogen	H ₂	0	Calcium carbonate	CaCO ₃	-1129.1
Methane	CH_4	-50.8	Calcium oxide	CaO	-603.3
Nitrogen	N_2	0	Diamond	С	2.9
Nitrogen dioxide	NO_2	51.3	Graphite	С	0
Dinitrogen tetroxide	N_2O_4	99.8	Iron(III) oxide	Fe ₂ O ₃	-742.2

Standard Free Energies of Formation

Using table values, calculate the standard free-energy change at 25 °C for the reduction of iron(III) oxide with carbon monoxide:

 $Fe_2O_3(s) + 3 CO(g) \longrightarrow 2 Fe(s) + 3CO_2(g)$

 $\Delta G^{\circ} = [2 \Delta G^{\circ}_{f} (Fe(s)) + 3 \Delta G^{\circ}_{f} (CO_{2}(g))]$

 $- \left[1 \Delta \mathsf{G}^{\circ}_{\mathsf{f}} \left(\mathsf{Fe}_2 \mathsf{O}_3(s) \right) + 3 \Delta \mathsf{G}^{\circ}_{\mathsf{f}} \left(\mathsf{CO}(g) \right) \right]$

 $\Delta G^{\circ} = [(2 \text{ mol})(0 \text{ kJ/mol}) + (3 \text{ mol})(-394.4 \text{ kJ/mol})]$ - [(1 mol)(-742.2 kJ/mol) + (3 mol)(-137.2 kJ/mol)] $\Delta G^{\circ} = -29.4 \text{ kJ}$

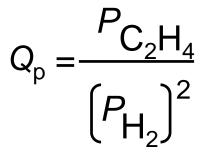
Free Energy Changes and the Reaction Mixture

$\Delta G = \Delta G^{\circ} + RT \ln Q$

 ΔG = Free-energy change under nonstandard conditions.

For the Haber synthesis of ammonia:

$$N_{2}(g) + 3 H_{2}(g) \rightleftharpoons 2 NH_{3}(g) \qquad Q_{p} = \frac{\left(P_{NH_{3}}\right)^{2}}{\left(P_{N_{2}}\right)\left(P_{H_{2}}\right)^{3}}$$


Free Energy Changes and the Reaction Mixture

Calculate ΔG for the formation of ethylene (C₂H₄) from carbon and hydrogen at 25 °C when the partial pressures are 100 atm H₂ and 0.10 atm C₂H₄.

$$2 C(s) + 2 H_2(g) \rightleftharpoons C_2 H_4(g)$$
 $\Delta G^\circ = 68.1 \text{ kJ}$

Use:

 $\Delta G = \Delta G^{\circ} + RT \ln Q$

Free Energy Changes and the Reaction Mixture

Calculate In Q:

$$\ln\left(\frac{0.10}{1002}\right) = -11.51$$

Calculate DG:

 $\Delta G = \Delta G^{\circ} + RT \ln Q$

= 68.1 kJ/mol +
$$\left(8.314 \frac{J}{K \text{ mol}}\right)$$
 (298 K)(-11.51) $\left(\frac{1 \text{ kJ}}{1000 \text{ J}}\right)$

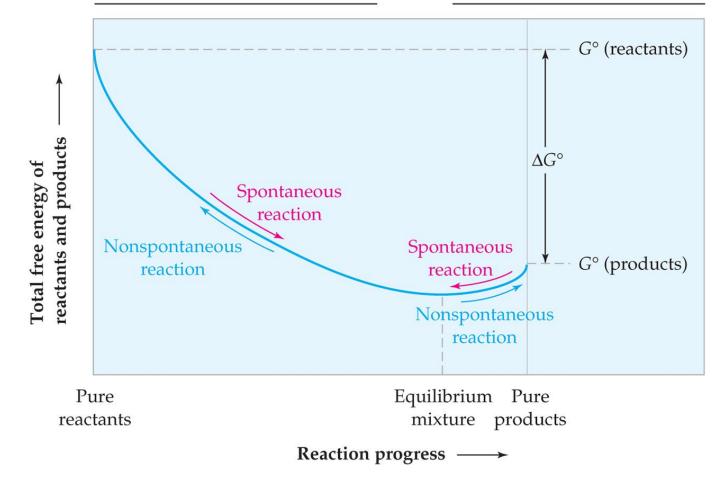
$$\Delta G = (39.6 \text{ kJ/mol})$$

 $\Delta G = \Delta G^{\circ} + RT \ln Q$

• When the reaction mixture is mostly reactants:

Q << 1 $RT \ln Q << 0$ $\Delta G < 0$

The total free energy decreases as the reaction proceeds spontaneously in the *forward* direction.


• When the reaction mixture is mostly products:

Q >> 1 $RT \ln Q >> 0$ $\Delta G > 0$

The total free energy decreases as the reaction proceeds spontaneously in the *reverse* direction.

Beginning with pure reactants, the free energy decreases ($\Delta G < 0$) as the system moves toward equilibrium.

Beginning with pure products, the free energy also decreases ($\Delta G < 0$) as the system moves toward equilibrium.

 $\Delta G = \Delta G^{\circ} + RT \ln Q$

At equilibrium, $\Delta G = 0$ and Q = K.

$\Delta G^{\circ} = -RT \ln K$

TABLE 17.4 Relationship Between the Standard Free-Energy Change and the Equilibrium Constant for a Reaction: $\Delta G^{\circ} = -RT \ln K$

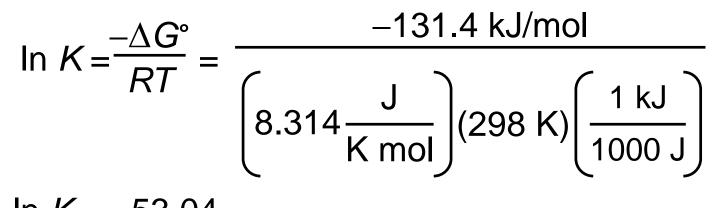
ΔG°	ln K	K	Comment
$\Delta G^{\circ} < 0$	$\ln K > 0$	K > 1	The equilibrium mixture is mainly products.
$\Delta G^{\circ} > 0$	$\ln K < 0$	K < 1	The equilibrium mixture is mainly reactants.
$\Delta G^{\circ} = 0$	$\ln K = 0$	K = 1	The equilibrium mixture contains comparable amounts of reactants and products.

Calculate K_p at 25 °C for the following reaction:

 $CaCO_3(s) \rightleftharpoons CaO(s) + CO_2(g)$

Calculate ΔG° :

 $\Delta G^{\circ} = [\Delta G^{\circ}_{f} (CaO(s)) + \Delta G^{\circ}_{f} (CO_{2}(g))] - [\Delta G^{\circ}_{f} (CaCO_{3}(s))]$


= [(1 mol)(-603.3 kJ/mol) + (1 mol)(-394.4 kJ/mol)]

- [(1 mol)(-1129.1 kJ/mol)]

 $\Delta G^{\circ} = +131.4 \text{ kJ/mol}$

Calculate In K:

 $\Delta G^{\circ} = -RT \ln K$

$$\ln K = -53.04$$

Calculate K:

$$K = e^{-53.04} = 9.2 \times 10^{-24}$$