Gen Chem II Lecture Spring 20 Dr. Hahn A section Quiz 2 1/24 Friday Exam \# \qquad
Name \qquad Print Name \qquad
Please show work on questions for partial credit even on questions which do not specify. (20 total pts this quiz, actually worth 10 pts each quiz for a total of 80 total quiz points with 20 pts HW points - quiz + HW points worth 10% of grade)

1. The enthalpy of fusion or heat of fusion $\left(\Delta \mathrm{H}_{\text {fusion }}\right)$, of water is positive and corresponds to which physical change? (2 pts)
(A) $\mathrm{H}_{2} \mathrm{O}(\mathrm{s}) \rightarrow \mathrm{H}_{2} \mathrm{O}$ (l)
(B) $\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \rightarrow \mathrm{H}_{2} \mathrm{O}$ (s)
(C) $\mathrm{H}_{2} \mathrm{O}(\mathrm{s}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
(D) $\mathrm{H}_{2} \mathrm{O}$ (l) $\rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{s})$
2. Determine the sign of $\Delta \mathrm{S}^{0}$ for each of the following. (2 pts)
I. $\quad \mathrm{C}_{6} \mathrm{H}_{6}(\mathrm{~s}) \rightarrow \mathrm{C}_{6} \mathrm{H}_{6}(\mathrm{l})$
II. $\quad 2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{SO}_{3}(\mathrm{~g})$
(A) $\Delta \mathrm{S}^{\circ}$ should be positive ford and positive for II
(B) ΔS° should be negative for I and negative for II.
(C) $\Delta \mathrm{S}^{\circ}$ should be positive for I and negative for II.
(D) $\Delta \mathrm{S}^{\circ}$ should be negative for I and positive for II.
3. Which of the following compounds has the highest boiling point? (2 pts)
(A) $\mathrm{HOCH}_{2} \mathrm{CH}_{2} \mathrm{OH}$
(B) $\mathrm{H}_{3} \mathrm{C}-\mathrm{O}-\mathrm{CH}_{3}$
(C) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$
(D) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$
4. (a) What is ΔG for the reaction given b dipole Hond 4 bod dispersion
(a) (show worm)

$$
\mathrm{CO}(\mathrm{~g})+2 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{CH}_{3} \mathrm{OH}(\mathrm{l}) \text { at } 25^{\circ} \mathrm{C} \quad \Delta \mathrm{H}^{\mathrm{o}}=128.1 \mathrm{~kJ} \text { and } \Delta \mathrm{S}^{\circ}=-332 \mathrm{~J} / \mathrm{K}
$$

$$
\text { [useful information: } \quad \Delta \mathrm{G}=\Delta \mathrm{H}-\mathrm{T} \Delta \mathrm{~S} \quad \mathrm{~K}={ }^{\circ} \mathrm{C}+273.15 \text {] }
$$

$$
\begin{aligned}
& T=25+273,15 \\
& T=298,15
\end{aligned}
$$

(b) Is the reaction spontaneous? [(yes) or (no)] (circle one) $(1 \mathrm{pt})$
5. The enthalpy of fusion of naphthalene, $\mathrm{C}_{10} \mathrm{H}_{8}$ is $19.1 \mathrm{~kJ} / \mathrm{mol}$ at $78.2^{\circ} \mathrm{C}$, its melting point.

$$
\text { [useful information: } \quad \Delta \mathrm{G}=\Delta \mathrm{H}-\mathrm{T} \Delta \mathrm{~S} \quad \mathrm{~K}={ }^{\circ} \mathrm{C}+273.15 \text {] } \quad \mathrm{K}=78.2{ }^{\circ} \mathrm{C}+273,15=
$$

(a) Under the condition above (fusion) what is $\Delta \mathrm{G}$? [(no idea) or (zero)] (circle one) (1 pt)
(b) Calculate the entropy of fusion at the melting point. (5 pt)

$$
\begin{aligned}
& \Delta H=T \Delta S t^{-2} \\
& \Delta s=\frac{\Delta H}{T}=\frac{19.1 \frac{\mathrm{~kJ}}{\text { had }} \times \frac{1000 \mathrm{~J}}{1 \mathrm{~kJ}}}{351.35 \mathrm{~K}}=\frac{00.0544 \mathrm{ht} / \mathrm{mplk}}{\text { mark }}
\end{aligned}
$$

$$
\begin{aligned}
& \Delta H^{\circ}=128.1 \mathrm{KJ} \times \frac{1000 \mathrm{~J}}{1 \mathrm{KJ}}=128100 \mathrm{~J} \\
& \Delta G=128100 \mathrm{~J}-(298.15 \mathrm{k})(-332 \mathrm{~J} / \mathrm{k}) \\
& \Delta G=128100 J+98985, \delta_{J}=227085.89 \rightarrow 227 \mathrm{hJ}
\end{aligned}
$$

Gen Chem II Lecture Spring 20 Dr. Hahn C section A form Quiz 2 1/24 Friday Exam \# \qquad
Name \qquad Print Name \qquad
Please show work on aH questions for partial credit even on questions which do not specify. (20 total pts this quiz, actually worth 10 pts each quiz for a total of 80 total quiz points with 20 pts HW points - quiz +HW points worth 10% of grade)

1. Which of the following can be interpreted as a measure of randomness ? (2 pts)
(A) free energy
(B) enthalpy
(C) temperature
(D) entropy
2. Which combination always results in a reaction being spontaneous?

$$
(2 \mathrm{pts})
$$

(A) $\Delta \mathrm{H}$ is negative and $\Delta \mathrm{S}$ is positive
(B) $\Delta \mathrm{H}$ is positive and $\Delta \mathrm{S}$ is negative
(C) $\Delta \mathrm{H}$ is positive and $\Delta \mathrm{S}$ is negative.
(D) $\Delta \mathrm{H}$ is negative and $\Delta \mathrm{S}$ is negative.

3. The normal boiling point for HBr is higher than the normal boiling point for HCl . This can be explained by:
(A) arger dispersion forces for HBr
(B) Larger dipole-dipole forces for HBr
(C) Larger dipole-dipole forces, larger dispersion forces, and larger hydrogen - bond forces for HBr (D) Larger hydrogen-bond forces for HBr .
4. (a) Calculate $\Delta \mathrm{G}^{\circ}$ for the reaction below at $25^{\circ} \mathrm{C}$. (5 pts)

$$
\left.2 \mathrm{~S}(\mathrm{~s})+3 \mathrm{O}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow 2 \mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{l}) \quad \Delta \mathrm{H}^{0}=-1056 \mathrm{~kJ} / \mathrm{mol} \quad \Delta \mathrm{~S}^{0}=-505 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{~K}\right)
$$

[useful information: $\left.\Delta \mathrm{G}=\Delta \mathrm{H}-\mathrm{T} \Delta \mathrm{S} \quad \mathrm{K}={ }^{\circ} \mathrm{C}+273.15\right] \quad \mathrm{K}=25+273,15=298,15$
(b) Is the reaction spontaneous? (yeas) or (no) (circle one) (1 pt (lni t Conversion erhard

5. The boiling point of ethanol is 78.4 C and $\Delta \mathrm{H}_{\text {vap }}=38.56 \mathrm{~kJ} / \mathrm{mol}$.
[useful information: $\Delta \mathrm{G}=\Delta \mathrm{H}-\mathrm{T} \Delta \mathrm{S} \quad \mathrm{K}={ }^{\circ} \mathrm{C}+273.15$] rap $\quad \mathrm{T}=78.4^{\circ} \mathrm{C}+273,15$
(a) Under the condition above (vaporization) what is $\Delta \mathrm{G}$? [(no idea) or (zero)] (circle one) (1 pt)
(b) Calculate the entropy of vaporization at the boiling point. (5 pts)

$$
T=351,55 \mathrm{~K}
$$

$$
\Delta S_{\text {Vc }}=\left(10 \frac{\mathrm{~J}}{\text { hulk }}\right. \text { (sf.) }
$$

$$
\begin{aligned}
& \frac{38.56 \mathrm{gJJ}}{\mathrm{knol}} \times \frac{1000 \mathrm{~J}}{1 \mathrm{~kJ}} \\
& 351.55 \mathrm{~K}
\end{aligned}
$$

Gen Chem II Lecture Spring 20 Dr. Hahn C section B form Quiz 2 1/24 Friday Exam \# \qquad
Name \qquad Print Name \qquad
Please show work on all ghestions for partial credit even on questions which do not specify. (20 total pts this quiz, actually worth 10 pts each quiz for a total of 80 total quiz points with 20 pts HW points - quiz +HW points worth 10% of grade)

1. Which of the following best explains why $\Delta \mathrm{H}_{\text {vip }}$ is usually higher than $\Delta \mathrm{H}_{\text {fusion }}$? (2 pts)
(A) Vaporization involves the breaking of bonds within molecules
(B) Vaporization involves the breaking of all bonds between molecules
(C) Vaporization increases the entropy of molecules.
(D) Vaporization occurs at high temperature.
2. When a substance melts at its normal melting point, the sign of $\Delta \mathrm{H}$ is $\quad \uparrow$ and the sign of $\Delta \mathrm{S}$ of this phase change is \qquad $+$.

$$
\begin{aligned}
& \text { (A) }+,-(\mathrm{B}) \\
& \text { Which of the foll } \\
& \text { (A) } \mathrm{C}_{5} \mathrm{H}_{11} \mathrm{OH}
\end{aligned}
$$

(B),++
(C),-+
(D),--
3. Which of the following is expected to have the greatest viscosity? (2 pts)
(B) $\mathrm{C}_{5} \mathrm{H}_{12}$
(C) CH_{4}
(D) $\mathrm{C}_{6} \mathrm{H}_{14}$
4. (a) If $\Delta \mathrm{H}=83 \mathrm{~kJ}$ and $\Delta \mathrm{S}=-234 \mathrm{~J} / \mathrm{K}$ at $35^{\circ} \mathrm{C}$, (a) what is $\Delta \mathrm{G}$? (5 pts)
[useful information: $\quad \Delta \mathrm{G}=\Delta \mathrm{H}-\mathrm{T} \Delta \mathrm{S} \quad \mathrm{K}={ }^{\circ} \mathrm{C}+273.15$]
(b) Is the reaction spontaneous? $[(\mathrm{yes})$ or (no) $]$ (circle one) $(1 \mathrm{pt})$

$$
83 \mathrm{hJ} \times \frac{1000 J}{1 k J}=
$$

$$
\begin{array}{r}
155 \mathrm{hJ}\left(\# 1.5,1.66 \begin{array}{r}
155107] \\
\left.\times 10^{2} \mathrm{gJ}\right]
\end{array} 1000=\right.
\end{array}
$$

5. (a) The heat of vaporization of water at $100^{\circ} \mathrm{C}$ is $40.66 \mathrm{~kJ} / \mathrm{mol}$. Calculate the quantity of heat that is absorbed/released when 20.00 g of steam condenses to liquid water at $100^{\circ} \mathrm{C}$. (formula mass of water $=18.02$ $\mathrm{g} / \mathrm{mol}$) (5 pts)
[useful information: $\mathrm{q}=\mathrm{n} \Delta \mathrm{H}_{\text {yap }}$]
(b) Is the heat [(absorbed) of (released) ? (1 pt)

Ind page same all forms
6. Given the following reaction being done in a calorimeter (constant pressure ran)
$\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})+2 \mathrm{NaOH}(\mathrm{aq}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{Na}_{2} \mathrm{SO}_{4}(\mathrm{aq})$
When 25.0 mL of $1.0 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ is added to 50.0 mL of a 1.0 M NaOH at $25^{\circ} \mathrm{C}$ in a calorimeter, The temperature of the solution rises to $33.9{ }^{\circ} \mathrm{C}$. If the specific heat of the solution is $4.18 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C}$ and density is $1.00 \mathrm{~g} / \mathrm{mL}$ and the calorimeter does not absorb much heat.

The calculation of q is given below for 75 grams of water $\mathrm{q}=(4.18 \mathrm{~J} / \mathrm{g} \mathrm{C})(75.0 \mathrm{~g})\left(8.9^{\circ} \mathrm{C}\right)=2790.15 \mathrm{~J}$

(a) What is the system?
(reaction) or (water in the calorimeter)] (circle one)? (1 pt)
(b) If I want the $\underline{\boldsymbol{H}}$ for the reaction as done in the procedure outlined above resulting in the heating of the calorimeter and water as shown above, how would you do that ? (give a number with a sign) (1 pt)

$$
-2790.15 \mathrm{~J} \text { sign }-\frac{1}{2}
$$

(c) Is the answer to (b) the same as for 1 mole of $\mathrm{H}_{2} \mathrm{SO}_{4}$ and 2 moles of NaOH ? The reaction in the calorimeter above was done for $\left(25.0 \mathrm{~mL} * 1.0 \mathrm{~mole} / 1000 \mathrm{pLL}=0.025\right.$ moles of $\left.\mathrm{H}_{2} \mathrm{SO}_{4}\right)$
$[($ yes $)$ or $(\mathrm{no})]$ (circle one) $\quad(1 \mathrm{pt})$

Gen Chem II Lecture Spring 20 Dr. Hahn A section Quiz 2 1/24 Friday Exam \# \qquad
Name \qquad Print Name \qquad
Please show work on all questions for partial credit even on questions which do not specify. (20 total pts this quiz, actually worth 10 pts each quiz for a total of 80 total quiz points with 20 pts HW points - quiz +HW points worth 10% of grade)

1. The enthalpy of fusion or heat of fusion ($\Delta \mathrm{H}_{\text {fusion }}$), of water is positive and corresponds to which physical change? (2 pts)
(A) $\quad \mathrm{H}_{2} \mathrm{O}(\mathrm{s}) \rightarrow \mathrm{H}_{2} \mathrm{O}$ (l)
(B) $\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \rightarrow \mathrm{H}_{2} \mathrm{O}$ (s)
(C) $\mathrm{H}_{2} \mathrm{O}(\mathrm{s}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
(D) $\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{s})$
2. Determine the sign of $\Delta \mathrm{S}^{\circ}$ for each of the following. (2 pts)
I. $\quad \mathrm{C}_{6} \mathrm{H}_{6}(\mathrm{~s}) \rightarrow \mathrm{C}_{6} \mathrm{H}_{6}(\mathrm{l})$
II. $\quad 2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{SO}_{3}(\mathrm{~g})$
(A) $\Delta \mathrm{S}^{\circ}$ should be positive for I and positive for II
(B) $\Delta \mathrm{S}^{\circ}$ should be negative for I and negative for II.
(C) $\Delta \mathrm{S}^{\circ}$ should be positive for I and negative for II.
(D) $\Delta \mathrm{S}^{\circ}$ should be negative for I and positive for II.
3. Which of the following compounds has the highest boiling point? (2 pts)
(A) $\mathrm{HOCH}_{2} \mathrm{CH}_{2} \mathrm{OH}$
(B) $\mathrm{H}_{3} \mathrm{C}-\mathrm{O}-\mathrm{CH}_{3}$
(C) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$
(D) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$
4. (a) What is $\Delta \mathrm{G}$ for the reaction given below ? (5 pts) (show work)
$\mathrm{CO}(\mathrm{g})+2 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{CH}_{3} \mathrm{OH}(\mathrm{l})$ at $25^{\circ} \mathrm{C} \quad \Delta \mathrm{H}^{\mathrm{o}}=128.1 \mathrm{~kJ}$ and $\Delta \mathrm{S}^{\circ}=-332 \mathrm{~J} / \mathrm{K}$
[useful information: $\quad \Delta \mathrm{G}=\Delta \mathrm{H}-\mathrm{T} \Delta \mathrm{S} \quad \mathrm{K}={ }^{\circ} \mathrm{C}+273.15$]
(b) Is the reaction spontaneous ? [(yes) or (no)] (circle one) (1 pt)
5. The enthalpy of fusion of naphthalene, $\mathrm{C}_{10} \mathrm{H}_{8}$ is $19.1 \mathrm{~kJ} / \mathrm{mol}$ at $78.2^{\circ} \mathrm{C}$, its melting point. [useful information: $\left.\quad \Delta \mathrm{G}=\Delta \mathrm{H}-\mathrm{T} \Delta \mathrm{S} \quad \mathrm{K}={ }^{\circ} \mathrm{C}+273.15\right]$
(a) Under the condition above (fusion) what is $\Delta \mathrm{G}$? [(no idea) or (zero)] (circle one) (1 pt)
(b) Calculate the entropy of fusion at the melting point. (5 pt)

Gen Chem II Lecture Spring 20 Dr. Hahn C section A form Quiz 2 1/24 Friday Exam \# \qquad
Name \qquad Print Name \qquad
Please show work on all questions for partial credit even on questions which do not specify. (20 total pts this quiz, actually worth 10 pts each quiz for a total of 80 total quiz points with 20 pts HW points - quiz +HW points worth 10% of grade)
6. Which of the following can be interpreted as a measure of randomness ? (2 pts)
(A) free energy
(B) enthalpy
(C) temperature
(D) entropy
7. Which combination always results in a reaction being spontaneous ?
(A) $\Delta \mathrm{H}$ is negative and $\Delta \mathrm{S}$ is positive
(B) $\Delta \mathrm{H}$ is positive and $\Delta \mathrm{S}$ is negative
(C) $\Delta \mathrm{H}$ is positive and $\Delta \mathrm{S}$ is negative.
(D) $\Delta \mathrm{H}$ is negative and $\Delta \mathrm{S}$ is negative.
8. The normal boiling point for HBr is higher than the normal boiling point for HCl . This can be explained by:
(A) Larger dispersion forces for HBr
(B) Larger dipole-dipole forces for HBr
(C) Larger dipole-dipole forces, larger dispersion forces, and larger hydrogen - bond forces for HBr
(D) Larger hydrogen-bond forces for HBr .
9. (a) Calculate $\Delta \mathrm{G}^{\mathrm{o}}$ for the reaction below at $25^{\circ} \mathrm{C}$. (5 pts)
$2 \mathrm{~S}(\mathrm{~s})+3 \mathrm{O}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow 2 \mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{l}) \quad \Delta \mathrm{H}^{\mathrm{o}}=-1056 \mathrm{~kJ} / \mathrm{mol} \quad \Delta \mathrm{S}^{0}=-505 \mathrm{~J} / \mathrm{mol}$
[useful information: $\left.\quad \Delta \mathrm{G}=\Delta \mathrm{H}-\mathrm{T} \Delta \mathrm{S} \quad \mathrm{K}={ }^{\circ} \mathrm{C}+273.15\right]$
(b) Is the reaction spontaneous ? [(yes) or (no)] (circle one) (1 pt)
10. The boiling point of ethanol is $78.4{ }^{\circ} \mathrm{C} \quad$ and $\quad \Delta \underset{\text { vap }}{ }=38.56 \mathrm{~kJ} / \mathrm{mol}$. [useful information: $\left.\quad \Delta \mathrm{G}=\Delta \mathrm{H}-\mathrm{T} \Delta \mathrm{S} \quad \mathrm{K}={ }^{\circ} \mathrm{C}+273.15\right]$
(a) Under the condition above (vaporization) what is $\Delta \mathrm{G}$? [(no idea) or (zero)] (circle one) (1 pt)
(b) Calculate the entropy of vaporization at the boiling point. (5 pts)
\qquad
Name \qquad Print Name \qquad
Please show work on all questions for partial credit even on questions which do not specify. (20 total pts this quiz, actually worth 10 pts each quiz for a total of 80 total quiz points with 20 pts HW points - quiz +HW points worth 10% of grade)
11. Which of the following best explains why $\Delta \mathrm{H}_{\text {vap }}$ is usually higher than $\Delta \mathrm{H}_{\text {fusion }}$?
(A) Vaporization involves the breaking of bonds within molecules
(B) Vaporization involves the breaking of all bonds between molecules
(C) Vaporization increases the entropy of molecules.
(D) Vaporization occurs at high temperature.
12. When a substance melts at its normal melting point, the sign of $\Delta \mathrm{H}$ is \qquad and the sign of $\Delta \mathrm{S}$ of this phase change is \qquad .
(A) + ,
(B),++
(C),-+
(D) -, -
13. Which of the following is expected to have the greatest viscosity? (2 pts)
(A) $\mathrm{C}_{5} \mathrm{H}_{11} \mathrm{OH}$
(B) $\mathrm{C}_{5} \mathrm{H}_{12}$
(C) CH_{4}
(D) $\mathrm{C}_{6} \mathrm{H}_{14}$
4. (a) If $\Delta \mathrm{H}=83 \mathrm{~kJ}$ and $\Delta \mathrm{S}=-234 \mathrm{~J} / \mathrm{K}$ at $35^{\circ} \mathrm{C}$, (a) what is $\Delta \mathrm{G}$? (5 pts)
[useful information: $\quad \Delta \mathrm{G}=\Delta \mathrm{H}-\mathrm{T} \Delta \mathrm{S} \quad \mathrm{K}={ }^{\circ} \mathrm{C}+273.15$]
(b) Is the reaction spontaneous ? [(yes) or (no)] (circle one) (1 pt)
5. (a) The heat of vaporization of water at $100^{\circ} \mathrm{C}$ is $40.66 \mathrm{~kJ} / \mathrm{mol}$. Calculate the quantity of heat that is absorbed/released when 20.00 g of steam condenses to liquid water at $100^{\circ} \mathrm{C}$. (formula mass of water $=18.02$ $\mathrm{g} / \mathrm{mol}$) (5 pts)
[useful information: $\mathrm{q}=\mathrm{n} \Delta \mathrm{H}_{\text {vap }}$]
(b) Is the heat [(absorbed) or (released)] ? (1 pt)
6. Given the following reaction being done in a calorimeter (constant pressure rxn)
$\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})+2 \mathrm{NaOH}(\mathrm{aq}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{Na}_{2} \mathrm{SO}_{4}(\mathrm{aq})$
When 25.0 mL of $1.0 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ is added to 50.0 mL of a 1.0 M NaOH at $25^{\circ} \mathrm{C}$ in a calorimeter, The temperature of the solution rises to $33.9{ }^{\circ} \mathrm{C}$. If the specific heat of the solution is $4.18 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C}$ and density is $1.00 \mathrm{~g} / \mathrm{mL}$ and the calorimeter does not absorb much heat.

The calculation of q is given below for 75 grams of water
$\mathrm{q}=\left(4.18 \mathrm{~J} / \mathrm{g}^{\mathrm{o}} \mathrm{C}\right)(75.0 \mathrm{~g})\left(8.9^{\mathrm{o}} \mathrm{C}\right)=2790.15 \mathrm{~J}$
(a) What is the system? [(reaction) or (water in the calorimeter)] (circle one)? (1 pt)
(b) If I want the $\underline{\Delta H}$ for the reaction as done in the procedure outlined above resulting in the heating of the calorimeter and water as shown above, how would you do that ? (give a number with a sign) (1 pt)
(c) Is the answer to (b) the same as for 1 mole of $\mathrm{H}_{2} \mathrm{SO}_{4}$ and 2 moles of NaOH ? The reaction in the calorimeter above was done for ($25.0 \mathrm{~mL} * 1.0$ mole / $1000 \mathrm{~mL}=0.025$ moles of $\mathrm{H}_{2} \mathrm{SO}_{4}$)
[(yes) or (no)] (circle one) (1 pt)

