

Copyright ©2018 Cengage Learning. All Rights Reserved.

Chapter 2 *Table of Contents*

- (2.1) The early history of chemistry
- (2.2) Fundamental chemical laws
- (2.3) Dalton's atomic theory
- (2.4) Early experiments to characterize the atom
- (2.5) The modern view of atomic structure: An introduction
- (2.6) Molecules and ions
- (2.7) An introduction to the periodic table
- (2.8) Naming simple compounds

Section 2.2 Fundamental Chemical Laws

Antoine Lavoisier

Said measurement is essential to chemistry.

- Verified the law of conservation of mass
 - Law of conservation of mass: Mass is neither created nor destroyed in a chemical reaction

Section 2.2 Fundamental Chemical Laws

Joseph Proust

Law of definite proportion: A given compound always contains exactly the same ratio of elements by mass

Copyright ©2018 Cengage Learning. All Rights Reserved.

Section 2.2 Fundamental Chemical Laws

John Dalton's Law of Multiple Proportions

When two elements form a series of compounds, the ratios of the masses of the second element that combine with 1 g of the first element can always be reduced to small whole numbers $(H_2O \& H_2O_2)$

Section 2.3 Dalton's Atomic Theory

Dalton's Atomic Theory

- Element are made up of tiny particles called atoms
- Atoms of a given element are identical
 - Atoms of different elements are different in some fundamental way

Section 2.3 Dalton's Atomic Theory

Dalton's Atomic Theory (continued)

- Chemical compounds are formed when atoms of different elements combine with each other
 - A given compound always has the same relative numbers and types of atoms
- Chemical reactions involve reorganization of the atoms
 - Atoms themselves are not changed in a chemical reaction

Atomic Structure

- Nucleus is assumed to contain:
 - Protons: Positive charge same size as negative charge of electrons
 - Neutrons: Same mass as a proton but no charge
- Atoms of different elements, which have different numbers of protons and electrons, exhibit different chemical behavior

Isotopes

- Atoms with the same number of protons but different numbers of neutrons
- almost identical chemical properties
- Most elements are mixtures of isotopes

Figure 2.15 - Two Isotopes of Sodium

Copyright ©2018 Cengage Learning. All Rights Reserved.

Identifying Isotopes

- Atomic number (Z): Number of protons
 - Written as a subscript
- Mass number (A): Total number of protons and neutrons

Section 2.5

The Modern View of Atomic Structure: An Introduction

Interactive Example 2.2 - Writing the Symbols for Atoms

- Write the symbol for the atom that has an atomic number of 9 and a mass number of 19
 - How many electrons and how many neutrons does this atom have?

Interactive Example 2.2 - Solution

- The atomic number 9 means the atom has 9 protons (& 9 electrons for neutral atom)
 - This element is called fluorine, symbolized by F
 - The atom is represented as follows:

 ${}^{19}_{9}F$

The atom is called fluorine nineteen

Exercise

- How many protons and neutrons are in the nucleus of each of the following atoms?
 - In a neutral atom of each element, how many electrons are present? End class 9/5W

1.	⁷⁹ Br	35 p, 44 n, 35 e
2.	⁸¹ Br	35 p, 46 n, 35 e
3.	²³⁹ Pu	94 p, 145 n, 94 e
4.	¹³³ Cs	55 p, 78 n, 55 e

Copyright ©2018 Cengage Learning. All Rights Reserved.

Chemical Bonds

Forces that hold atoms together in compounds
 Covalent bond: Formed by sharing electrons

lon

- Atom (atoms) with positive or negative charge
 - Cation: Positive ion formed by losing electrons
 - Anion: Negative ion formed by gaining electrons
- Ionic bonding: Force of attraction between oppositely charged ions

lonic compounds – metal with nonmetal combine two elements on **opposite side** of periodic table ex: NaCl, K_2S

Covalent compounds – nonmetal with nonmetal, combine two elements close together on periodic table ex: $CO_{2,} PCI_{3}$

Ion Formation - Example

- Sodium chloride
 - Formed when a neutral Cl and Na react
 - Electron is transferred from a Na atom to a Cl atom

Cation formation: $Na \longrightarrow Na^+ + e^-$

Anion formation: $Cl + e^{-} \longrightarrow Cl^{-}$

Ionic Solids

- Solids containing oppositely charged ions
- Can consist of:
 - Simple ions
 - Example Sodium chloride (NaCl)
 - Polyatomic ions: Contain many atoms
 - Example Ammonium nitrate (NH₄NO₃) contains ammonium ions (NH₄⁺) and nitrate ions (NO₃⁻)

- likely charge for below elements ?
- likely charge group <u>1A to 3A</u> = <u>+ group #</u>
- likely charge: group <u>5A to 7A</u> = group # 8)
 - group 2A, +2 a. Ra Loses 2 e^- to form Ra²⁺
 - group 3A, +3 b. In Loses 3 e^- to form In^{3+}
 - group 5A, 5 8 C. P Gains 3 e⁻ to form P³⁻
 - group 6A, 6 8 d. Te Gains 2 e⁻ to form Te²⁻

Copyright ©2018 Cengage Learning. All Rights Reserved.

The Periodic Table – Divided into Periods and Groups

One Way to Classify the Periodic Table

Metals/Nonmetals in the Periodic Table

Metals and Nonmetals

Metals

- Efficient conductors of heat and electricity, malleable, and ductile
- Have a lustrous appearance
- Tend to lose electrons to form positive ions

Nonmetals

- Lack the physical properties that characterize metals
- Tend to gain electrons in reactions with metals to form negative ions
- Often bond to each other by forming covalent bonds

Structure of the Periodic Table: Groups or Families

 Elements in the vertical columns with similar chemical properties

Alkali metals

- Members of Group 1A
- Very active elements that readily form ions with a 1+ charge when they react with nonmetals

Alkali metals

Structure of the Periodic Table: Groups or Families (continued 1)

Structure of the Periodic Table: Groups or Families (continued 2)

Halogens: Members of Group 7A 7A Form diatomic molecules 9 F React with metals to form salts containing ions with a 1– charge (exception - Astatine) 17 C1**Noble gases:** Members of Group 8A 35 Br Exist under normal conditions as monatomic gases 53 T Have little chemical reactivity 85 At

2

He

10

Ne

18

Ar

36 Kr

54

Xe

86

Rn

Binary Compounds

- Composed of two elements
- Include covalent and ionic compounds
 - Binary ionic compounds: Contain a cation, which is written first in the formula, and an anion

Naming Binary Ionic Compounds (Type I)

- Cation is always named first and the anion second
- Monatomic cation takes its name from the name of the parent element
- Monatomic anion is named by taking the root of the element name and adding -ide

Table 2.3 - Common Monatomic Cations and Anions

Cation	Name	Anion	Name
H ⁺	Hydr ogen plus ide	H ⁻	Hydride
Li ⁺	Lithium	F	Fluoride
Na ⁺	Sodium	CI^-	Chloride
K ⁺	Potassium	Br [_]	Bromide
Cs ⁺	Cesium	[-	lodide
Be ²⁺	Beryllium	O ²⁻	Oxide
Mg ²⁺	Magnesium	S ²⁻	Sulfide
Ca ²⁺	Calcium	N ³⁻	Nitride
Ba ²⁺	Barium	P ³⁻	Phosphide
Al ³⁺	Aluminum		
			1

Copyright ©2018 Cengage Learning. All Rights Reserved.

Interactive Example 2.3 - Naming Type I Binary Compounds

- Name each binary compound
 - a. CsF
 - b. AICl₃
 - c. LiH

Interactive Example 2.3 - Solution

- a. CsF is cesium fluoride
- b. AlCl₃ is aluminum chloride
- c. LiH is lithium hydride end 9/7F END EXAM I
 - Notice that, in each case, the cation is named first and then the anion is named