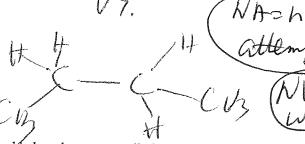
Please show work for partial credit and full credit on the Long Answers and in some of the Short Answer Questions.

Multiple choice questions have no partial credit. Please write anything you want graded legibly. If you run out of space, please continue on the empty back pages but clearly label where the remaining answer can be found. (If I can't find your answer or cannot read it, I obviously cannot grade it). Return your entire exam including the periodic table. (Please count your exam pages and make sure there are real pages + periodic table)

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. (2 pts each, 26 pts total)

1) The structures below are


H CH₃

BA = bad attempt

A) cis-trans isomers

- (B) structural isomers
- C) conformational isomers
- D) not isomers
- E) both B and D

2) In the lowest energy conformation of the compound below, how many alkyl substituents are axial?

(H₃C)₂HCMM

CH₃

equatorial

a)0 D)1

BBA bad al badtempt

3) Identify the major product of the reaction below.

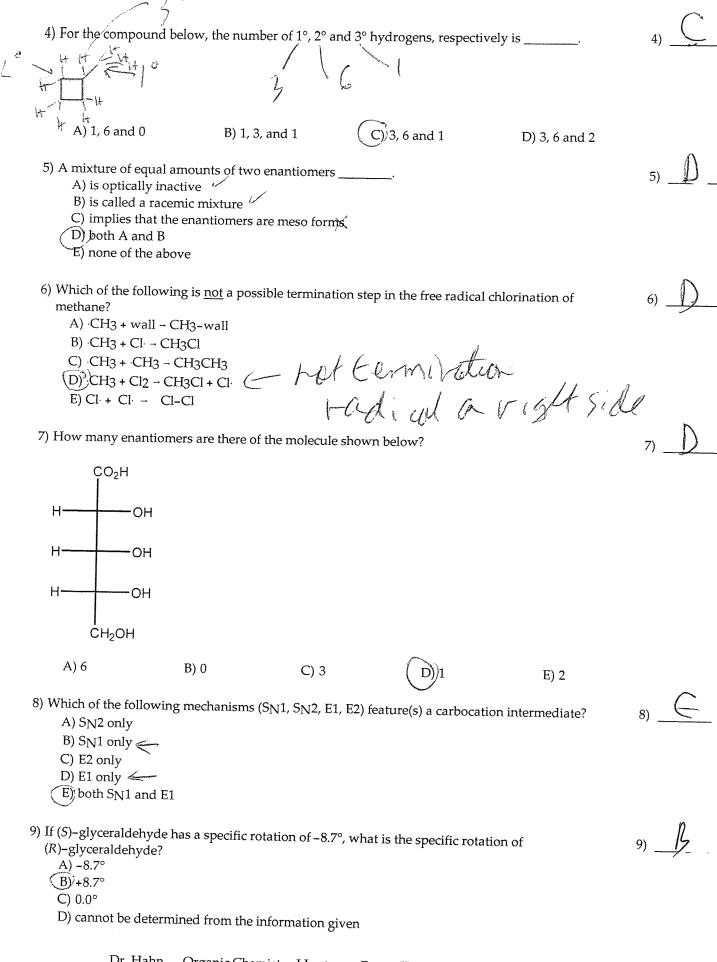
Br., CH₃

Potassium tert-butoxide

B) 6

Hoffnam

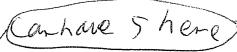
Product


A)

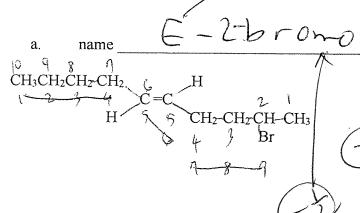
СН3

(B)) CH_z

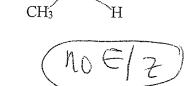
C)


CH³

10) How many asymmetr	ic carbon atoms are presen			10)
C X	2 chival (c with	r f et attrer	_
A) 0	B) 1	D) 3	E) 4	
11) In which of the followi A) S _N 2 only B) S _N 1 only C) E2 only D) E1 only E) both E1 and E2	ng mechanisms (SN1, SN2,	And the second s	ajor reaction products?	11)
12) A branched alkane has	boiling point relainteractions in the branche	ative to the isomeric linear and alkane.	alkane. There are	12) 🛕
13) Rank the following carb A) I > III > II	B) I > II > III	ty. (The most stable is first.	D) III > I > II	13)
	7°>2°>	> / 0	<i>D)</i> III > I > II	


Part II: Short Answers (40 pts)

A. Nomenclature: (2 pts each, 6 pts)


1. Given the structural formula shown below, give the IUPAC name of the molecule.

de

declara Et

b. name 5-methyl hexa-1,4-dulie CH3 54 CH2-CH=CH2 hexa - 1,4-dulie

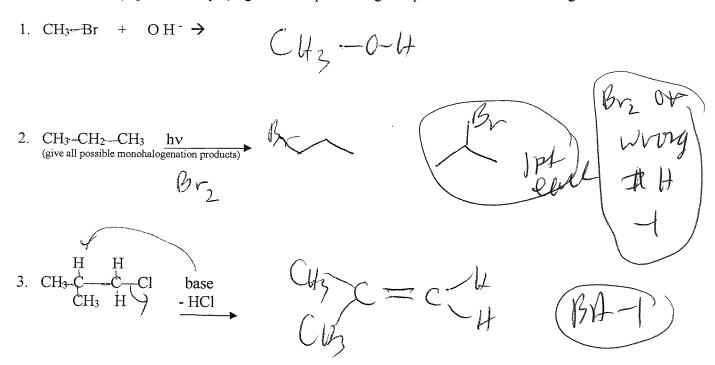
5-rely

Given the following IUPAC name, draw a structural formula of the molecule (skeletal formula acceptable, condensed structure, Lewis Dot structure acceptable, molecular formula not acceptable -

a. 2,4-dimethylhex-1-ene

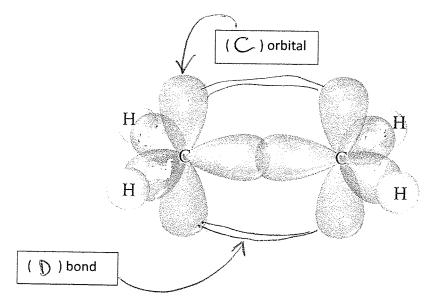
2.

$$CH_3 CH_3 CH_3 CH_3$$

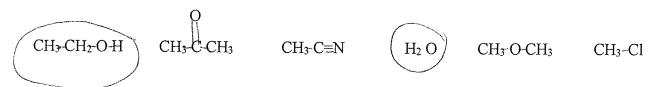

$$CH_3 CH_3 CH_3$$

$$CH_4 CH_5 CH_3$$

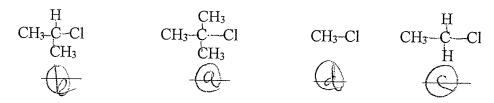
$$CH_5 CH_5 CH_3$$


don't forget to show the hydrogens in your formula unless you are using the skeletal structure.)

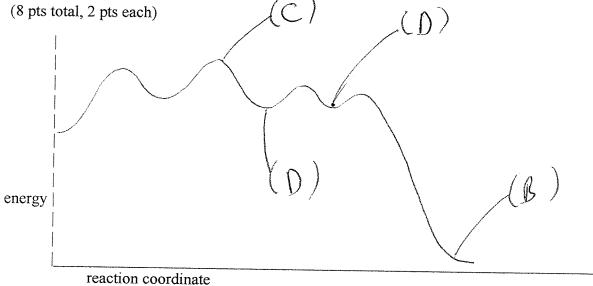
B. Reactions: (2 pts each, 6 pts) give the expected organic product for the following reaction.



C. Short Answer Part of Short Answer:

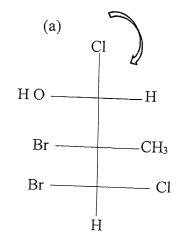

1. Match the labeling in the following parenthesis. Each parenthesis can hold one to multiple letters. Each letter may be used once, no time or multiple times (A) sp³ hybridized orbitals (B) sp² hybridized orbitals (C) unhybridzed p orbital (D) π bond (E) σ bond (F) s orbital (6 pts, 3 pts each)

Given the following list of solvents, circle every apolar protic solvent (6 pts total, 1 pt each) 2

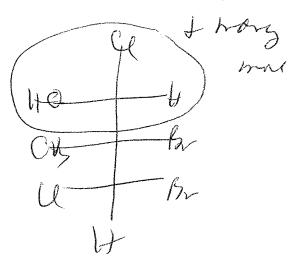

3 List the following from <u>best (a)</u> S_N1 substrate to <u>worst (d)</u> S_N1 substrate (8 pts total, 2 pts each)

Given the following energy diagram, label by filling in all parenthesis with one and only one letter. 4

(A) reactant

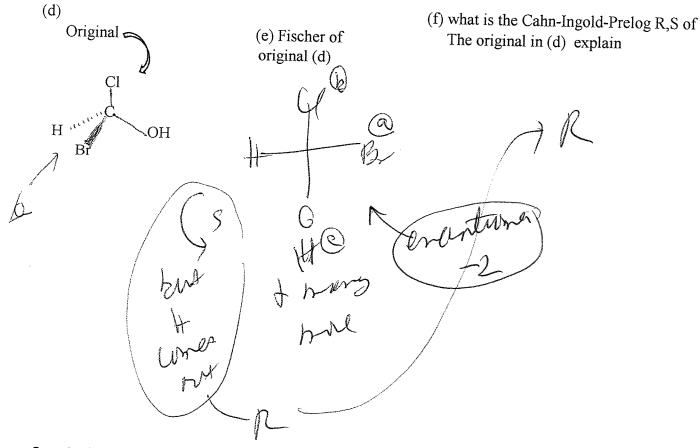

Part III: Long Answers (34 pts)

1. For the following molecule, answer the following: (16 pts total, 4 pts each)


Original molecule

(b). Enantiomer of original (a)

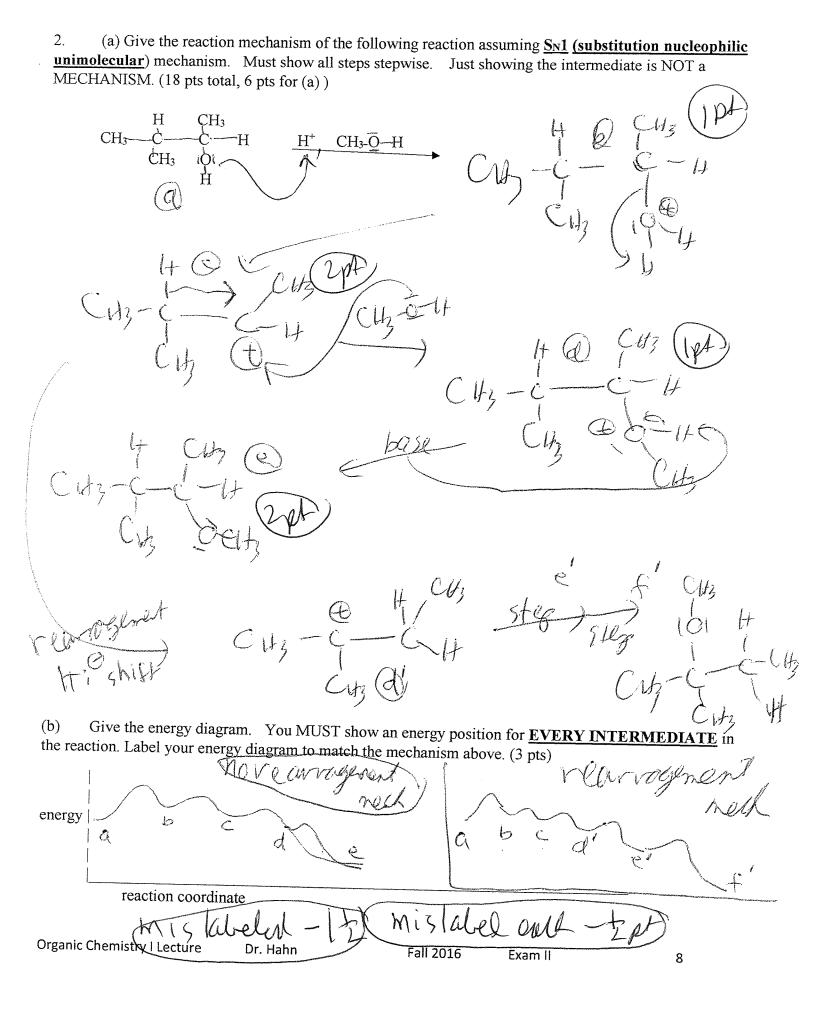
(c).diastereomer of the original (a)



Cy Br

Strukud isomer -4

50me as (9-4)

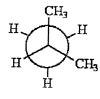


Organic Chemistry | Lecture

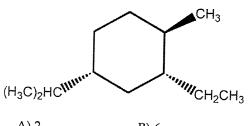
Dr. Hahn

Fall 2016

Exam II


(c) Write the rate law for the reaction showing the actual molecule in the reaction. (3 pts)	
rate = & (cy3-t-c-4) (BA-12)	
(d) Show a 3D structure of the carbocation intermediate (using wedge, dash and line 3D drawing)(2 pt)	
CBA Step of St	A section of the sect
(e) The molecule has a chiral center at the carbon attached to the OH. If the starting molecule was R Cahn Ingold Prelog orientation, after the reaction what would be the Cahn Ingold Prelog orientation of the product? Explain briefly. (2 pts)	
90:50 R+S-Carbocation is flat 50 sot both inversion + vetestron-silightly	5
more inversion (BA-1)	
(f) If the reaction undergoes an elimination instead of substitution draw the expected product below. Is the product that you drew [(Zaitsev product) or (Hoffmann product)] (circle one) (2 pts)	
Cy C	C_{t}
base the contraction of the cont	
Organic Chemistry Lecture Dr. Hahn Fall 2016 Exam 1 9	
Fall 2016 Exam II 9	

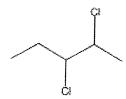
Please show work for partial credit and full credit on the Long Answers and in some of the Short Answer Questions. Multiple choice questions have no partial credit. Please write anything you want graded legibly. If you run out of space, please continue on the empty back pages but clearly label where the remaining answer can be found. (If I can't find your answer or cannot read it, I obviously cannot grade it). Return your entire exam including the periodic table. count your exam pages and make sure there are real pages + periodic table)


MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. (2 pts each, 26 pts total)

The structures below are ___

1) _____

- A) cis-trans isomers
- B) structural isomers
- C) conformational isomers
- D) not isomers
- E) both B and D
- 2) In the lowest energy conformation of the compound below, how many alkyl substituents are axial? 2) _


- A) 2
- B) 6
- C) 0
- D) 1
- E) 3

3) Identify the major product of the reaction below.

3) ____

4) For the compo	ound below, the num	nber of 1°, 2° an	d 3° hydrogens, respecti	vely is	4)
A) 1, 6 and	0 B) 1, 3	3, and 1	C) 3, 6 and 1	D) 3, 6 and 2	
5) A mixture of e	qual amounts of two	o enantiomers _	·····		5)
A) is optical B) is called	lly inactive a racemic mixture				- /
C) implies t	hat the enantiomers	are meso forms	;		
D) both A a	nd B				
E) none of t	he above				
6) Which of the fo	ollowing is <u>not</u> a pos	sible terminatio	on step in the free radical	l chlorination of	6)
methaner			•		· /
A) ·CH3 + w B) ·CH3 + C	rall – CH3–wall				
	CH3CH3 CH3CH3				
	l2 - CH3Cl + Cl				
E) Cl·+ Cl·					
7) How many ena	ntiomers are there o	f the molecule s	shown below?		7)
ÇO₂H					/
H————C	ЭН				
н——с	Н				
н	H				
ĊH₂OH					
A) 6	B) 0	C) 3	D) 1	E) 2	
8) Which of the fol	lowing mechanisms	(SN1, SN2, E1,	E2) feature(s) a carbocat	ion intermediate?	9)
A) 3N2 offy			, manager a carbocal	non intermediate:	8)
B) S _N 1 only					
C) E2 only D) E1 only					
E) both SN1 a	nd E1				
9) If (S)-glyceraldel (R)-glyceraldehy A) -8.7°	hyde has a specific ro de?	otation of -8.7°,	what is the specific rota	tion of	9)
B) +8.7°					
C) 0.0°					
D) cannot be d	etermined from the	information giv	ren		
Dr. H	ahn Organic Che	mistry I Lecture	e Exam II Fall 2016	page 2	

10)	How many	asymmetric carbor	atoms are present in	the molecule shown
			4	

- A) 0
- B) 1
- C) 2
- D) 3
- E) 4

11) In which of the following mechanisms (SN1, SN2, E1, E2) are alkenes the major reaction products?

11) ____

- A) S_N2 only
- B) S_N1 only
- C) E2 only
- D) E1 only
- E) both E1 and E2

12) A branched alkane has ___ boiling point relative to the isomeric linear alkane. There are _ London force interactions in the branched alkane.

12) ____

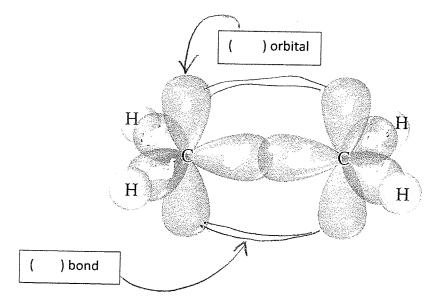
- A) a lower; weaker
- B) the same; similar
- C) a lower, stronger
- D) a higher; stronger
- E) a higher; weaker

13) Rank the following carbocations in order of stability. (The most stable is first.)

- I > II > II
- B) I > II > III
- C) II > I > III
- D) III > I > II

Part II: Short Answers (40 pts)

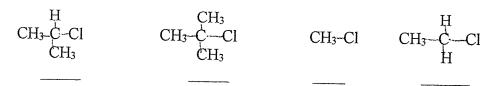
- A. Nomenclature: (2 pts each, 6 pts)
- 1. Given the structural formula shown below, give the IUPAC name of the molecule.


a. name ____

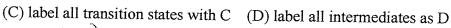
b. name____

- Given the following IUPAC name, draw a structural formula of the molecule (skeletal formula acceptable, condensed structure, Lewis Dot structure acceptable, molecular formula not acceptable don't forget to show the hydrogens in your formula unless you are using the skeletal structure.)
 - a. 2,4-dimethylhex-1-ene

B. Reactions: (2 pts each, 6 pts) give the expected organic product for the following reaction.


- C. Short Answer Part of Short Answer:
 - 1. Match the labeling in the following parenthesis. Each parenthesis can hold one to multiple letters. Each letter may be used once, no time or multiple times (A) sp³ hybridized orbitals (B) sp² hybridized orbitals (C) unhybridzed p orbital (D) π bond (E) σ bond (F) s orbital (6 pts, 3 pts each)

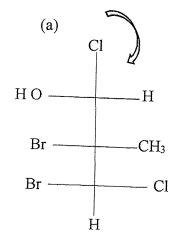
Given the following list of solvents, circle **every apolar protic solvent** (6 pts total, 1 pt each)


O CH₃-CH₂-O-H CH₃-C-CH₃ CH₃-C≡N H₂ O CH₃-O-CH₃ CH₃-Cl

3 List the following from <u>best (a)</u> S_N1 substrate to <u>worst (d)</u> S_N1 substrate (8 pts total, 2 pts each)

4 Given the following energy diagram, label by filling in all parenthesis with one and only one letter.

(A) reactant (B) product (C) label all transition states

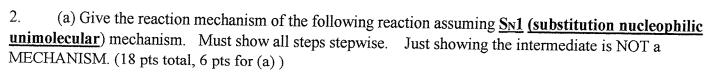

energy reaction coordinate

Part III: Long Answers (34 pts)

1. For the following molecule, answer the following: (16 pts total, 4 pts each)

Original molecule

- (b). Enantiomer of original (a)
- (c).diastereomer of the original (a)



- Original

 CI

 H

 OH
- (e) Fischer of original (d)
- (f) what is the Cahn-Ingold-Prelog R,S of The original in (d) explain

(b) Give the energy diagram. You MUST show an energy position for **EVERY INTERMEDIATE** in the reaction. Label your energy diagram to match the mechanism above. (3 pts)

energy reaction coordinate

(c)	Write the rate law for the reaction showing the actual molecule in the reaction. (3 pts)
(d)	Show a 3D structure of the carbocation intermediate (using wedge, dash and line 3D drawing)(2 pt)
	The molecule has a chiral center at the carbon attached to the OH. If the starting molecule was Regold Prelog orientation, after the reaction what would be the Cahn Ingold Prelog orientation of the Explain briefly. (2 pts)
(f) If he produ	The reaction undergoes an elimination instead of substitution draw the expected product below. Is act that you drew [(Zaitsev product) or (Hoffmann product)] (circle one) (2 pts)
ganic Che	emistry Hecture Dr. Haba