Name _	Partner Name
Section	
Experin	nent 10: Molecular Polarity Lab Report form Visit https://phet.colorado.edu/en/simulation/molecule-polarity
Part 1:	2 atom system (part 1 - # 1 to #5 and analysis)
(a)	For the molecule A $-$ B (1) draw the dipole moment vector arrow and (2) the δ + and δ - between A and B when A is <u>LESS</u> electronegative and B is <u>MORE</u> electronegative
(b)	For the molecule A—B (1) draw the dipole moment vector arrow and (2) the δ + and δ - between A and B when A is MORE electronegative and B is LESS electronegative
Part 2:	3 atom system (BENT) A—B—C (Part 2 #1 to #6 and analysis)
(a)	For the molecule A $-$ B $-$ C (1) draw the individual dipole moment vector arrow and (2) the δ + and δ -between A, C and B (3) draw the dipole moment arrow for the vector sum when A, C is LESS electronegative and B is MORE electronegative
(b)	For the molecule A—B—C (1) draw the dipole moment vector arrow and (2) the δ + and δ - between A, C and B (3) draw the dipole moment arrow for the vector sum when A, C is MORE electronegative and B is LESS electronegative
3 atom	system (LINEAR) A—B—C (Part 2 #7 to #9 and analysis)
(a)	For the molecule A $-$ B $-$ C (1) draw the individual dipole moment vector arrow and (2) the δ + and δ -between A, C and B (3) draw the dipole moment arrow for the vector sum when A, C is LESS electronegative and B is MORE electronegative
(b)	For the molecule A—B—C (1) draw the dipole moment vector arrow and (2) the δ + and δ - between A, C and B (3) draw the dipole moment arrow for the vector sum when A, C is MORE electronegative and B is LESS electronegative

Part 3 – Real Molecules: (p 128 text) Complete the following chart (# e = # valence electrons) (use p. 120 Table 1 and p. 121 Table 2)

molecule	Lewis Structure	VSEPRT Shape	predicted polarity	actual polarity	Electron Density
HF #e 8	H-F:	linear			
O ₂ #e 16		linear			
H ₂ O #e 8	H-0:14	bent			
CO ₂ #e 16	;°=c=0;	linear			
HCN # e 10	H-CEN:	linear			
NH₃ #e8	I N H	trigonal pyramidal			
BF ₃ #e 24	F-B	trigonal planar			
CH ₂ O # e 12	io=c'lt	trigonal planar			
CH ₄ # e 8	HC H	tetrahedral			
CH₃F # e 14	He F:	tetrahedral			
CH ₂ F ₂ # e 20	H ;:	tetrahedral			
CHF ₃ # e 26	F.	tetrahedral			
CF ₄ # e 32	F	tetrahedral			

Citadel CHEM 161 Expt 10: Molecular Polarity Lab

Dr. Hahn's Lab Report Form

Questions: Do the ones requested by your lab instructor.

1. Which would have the greater O-N-O bond angle, NO_2 or NO_2 *? Explain your answer.

2. Which of these molecules is/are polar? For each polar molecule, indicate the direction of dipole moment vector in the molecule (# e = # valence electrons) (Electron egative table p. 121

molecule	Lewis Structure	VSEPRT	Predicted polarity (show individual dipole moment arrow) (show
molecule	LCWIS STRUCTURE	Shape	vector sum arrow) 1 6
a. HBF ₂ #e 18	H-B 2.	trigonal planar	the sector sum (example)
b. XeF2 # e 2	80 00 00 80	linear	
c. HCN # e 10	O H-CEN:	Linear	
d. H ₂ S # e 8	# 5° H	Bent	
e. FNO # e 18	デールかい	bent	
f. S ₂ F ₂ # e 26	5-5°	bent	
g. NH ₂ O #e 14	HN-0:	trigonal pyramid (N), bent (O)	
h. SCl ₂ # e 20	S. Ci.	bent	
i. BCl ₃ # e 24	و الله الله الله الله الله الله الله الل	Trigonal planar	

3. Give the electron pair and the molecular geometries for the following iodine containing compounds.

Molecule	Lewis Structure	3 D drawing	Electron pair	Molecular
# e = # valence e		(, ⋝)	geometry name	geometry name
		behind plane front of plane in plane		
a. ICl ₂ * # e 20	· · · · · · · · · · · · · · · · · · ·	ce	tetrahedral (example)	bent (example)
b. I ₃ - #e 22	: I - I - I :	:-1		
c. ICl₃ #e 28	il.	ce — I		
d. ICl ₄ - # e 36		a live		
e. IO ₄ - # e 32	O I O.	0		
f. IF ₄ + # e 34	P. P.			
g. IF ₅ # e 42	F	F F F		
h. IF ₆ ⁺ # e 48	E E	FFF		