Oxidation of Cyclododecanol & Introduction to Infrared Spectroscopy

Part A, p. 543: Oxidation of cyclododecanol with bleach. (4th ed. p.531)
Part B, p. 237-260: FT-IR spectrum of starting material & product.
(5th ed. p. 233-256) *First formal report*.

Important Concepts

- Oxidation/Reduction
- Oxidizing agents (bleach)
 - Reaction Mechanisms
 - % Yield Calculations
- Infrared Spectroscopy: functional group identification

• Starch-Iodide test

Chem 341 - Oxidation & FT-IR, Copyright - D.J. Dyer & SIUC

Oxidation & Reduction

Oxidation: The net *loss* of electrons or addition of oxygen to a molecule. Usually there is an *increase* in the oxidation state of the molecule.

Reduction: The net *gain* of electrons or addition of hydrogen to a molecule. Usually there is a *decrease* in the oxidation state of the molecule.

Calculating the Oxidation State of Carbon

- a) +1 for each bond to a hydrogen atom or atom that is less electronegative than carbon.
- b) -1 for each bond to an atom that is more electronegative than carbon. (e.g. O, N, S, halogen)
- c) +0 for each bond to another carbon atom.

 \sum (sum) + Oxidation State (OS) = charge on the atom

H:
$$3(+1) = +3$$

H- $-C-CI$
H: $1(-1) = -1$
C: $0(0) = 0$
methylchloride
H: $3(+1) = +3$
C: $1(-1) = -1$
C: $0(0) = 0$
So $OS = -2$

Calculating the Oxidation State - cont.

Calculating the Oxidation State - cont.

Chem 341 - Oxidation & FT-IR, Copyright - D.J. Dyer & SIUC

Our Reaction

Chem 341 - Oxidation & FT-IR, Copyright - D.J. Dyer & SIUC

Procedural Details

- use 8 ml bleach initially.
- heat to gentle reflux rather than monitoring temperature. No need for thermometer. (b.p. acetone $\sim 56 \text{ }^{\circ}\text{C}$)
- after 30 minutes of gentle reflux, allow solution to cool.
- use long Pasteur pipette to remove a few drops of the aqueous layer. You may need to remove the condenser to do this.
- place a drop of the aqueous layer onto the starch/iodide paper. You should be able to test several spots on one piece of paper.
- if paper turns black, then the reaction is complete and you can proceed to workup. If not, add ~ 1 ml bleach and continue heating for an additional 20 minutes and then proceed to the workup procedure.

Workup - Week 1

- use disposable Pasteur pipette instead of filter-tip pipette.
- wash organic layer three times:

a) NaHCO₃ \implies neutralizes excess acid (acetic acid)

b) NaHSO₃ \implies reduces excess bleach

c) NaCl >>> removes excess water from organic phase

- dry organic layer over anhydrous Na₂SO₄.
- use the rotovap to remove the organic solvent.
- stop here during week 1.

Week 2

- recrystallize from methanol/water.
- acquire IR spectrum of your purified product.
- no oxime or semicarbazone derivatives.

Starch Iodide Test

% Yield Calculation

Method A	Method B
$\frac{\text{moles product}}{\text{moles limiting}} x 100 = \% \text{ yield}$	$\frac{\text{mass of product (g)}}{\text{Theoretical yield (g)}} \times 100 = \% \text{ yield}$
bleach is 5.25% NaOCl in water,	Theoretical yield (g) = [moles of limiting reagent] • [molecular mass product]
density ~1 g/mi	

Limiting Reagent = least # moles for a stoichiometric reagent

Chem 341 - Oxidation & FT-IR, Copyright - D.J. Dyer & SIUC

Required Data

- Yield, % yield

- m.p.

- Results of Starch/I₂ test

- IR of product, we will supply IR of starting material

Safety Issues

- bleach is a strong oxidizing agent, avoid contact with skin.

Chem 341 - Oxidation & FT-IR, Copyright - D.J. Dyer & SIUC