

Lecture Presentation

Chemical Tools: Experimentation and Measurement

John E. McMurry Robert C. Fay

The Scientific Method: Improved Pharmaceutical Insulin

- Comparing insulin profiles
- Natural insulin release
- Injected insulin
- An early spike means potential for low blood sugar later.
- Humalog ${ }^{\circledR}$, designed to mimic the body's natural release profile

The Scientific Method

- Observations
- Recording qualitative or quantitative data
- Hypothesis
- Explanation of observations
- Experiments
- Change one variable at a time
- Test hypothesis
- Theory
- Explains experiment
- Predicts further outcome

Experimentation and Measurement

Système Internationale d'Unités

TABLE 1.1 The Seven Fundamental SI Units of Measure

Physical Quantity	Name of Unit	Abbreviation
Mass	kilogram	kg
Length	meter	m
Temperature	kelvin	K
Amount of substance	mole	mol
Time	second	s
Electric current	ampere	A
Luminous intensity	candela	cd

All other units are derived from these fundamental units.

TABLE 1.2 Some Prefixes for Multiples of SI Units. The most commonly used prefixes are shown in red.

Factor	Prefix	Symbol	Example
$1,000,000,000,000=10^{12}$	tera	T	1 teragram $(\mathrm{Tg})=10^{12} \mathrm{~g}$
$1,000,000,000=10^{9}$	giga	G	1 gigameter $(\mathrm{Gm})=10^{9} \mathrm{~m}$
$1,000,000=10^{6}$	mega	M	1 megameter $(\mathrm{Mm})=10^{6} \mathrm{~m}$
$1000=10^{3}$	kilo	k	1 kilogram $(\mathrm{kg})=10^{3} \mathrm{~g}$
$100=10^{2}$	hecto	h	1 hectogram $(\mathrm{hg})=100 \mathrm{~g}$
$10=10^{1}$	deka	da	1 dekagram $(\mathrm{dag})=10 \mathrm{~g}$
		d	
$0.1=10^{-1}$	deci	c	1 decimeter $(\mathrm{dm})=0.1 \mathrm{~m}$
$0.01=10^{-2}$	centi	m	1 centimeter $(\mathrm{cm})=0.01 \mathrm{~m}$
$0.001=10^{-3}$	milli	μ	1 milligram $(\mathrm{mg})=0.001 \mathrm{~g}$
${ }^{*} 0.000001=10^{-6}$	micro	n	1 micrometer $(\mu \mathrm{m})=10^{-6} \mathrm{~m}$
${ }^{*} 0.000000001=10^{-9}$	nano	p	1 nanosecond $(\mathrm{ns})=10^{-9} \mathrm{~s}$
${ }^{*} 0.000000000001=10^{-12}$	pico	f	1 picosecond $(\mathrm{ps})=10^{-12} \mathrm{~s}$
${ }^{*} 0.000000000000001=10^{-15}$	femto	1 femtomole $(\mathrm{fmol})=10^{-15} \mathrm{~mol}$	

*For very small numbers, it is becoming common in scientific work to leave a thin space every three digits to the right of the decimal point, analogous to the comma placed every three digits to the left of the decimal point in large numbers.

Mass and Its Measurement

Mass: Amount of matter in an object

Weight: Measures the force with which gravity pulls on an object

Length and Its Measurement

Meter

- 1790: One ten-millionth of the distance from the equator to the North Pole along a meridian running through Paris, France
- 1889: Distance between two thin lines on a bar of platinum-iridium alloy stored near Paris, France
- 1983: The distance light travels in a vacuum in $1 / 299,792,458$ of a second

Temperature and Its Measurement

$$
\begin{aligned}
& { }^{\circ} \mathrm{F}=\left(\frac{9^{\circ} \mathrm{F}}{5^{\circ} \mathrm{C}}\right){ }^{\circ} \mathrm{C}+32{ }^{\circ} \mathrm{F} \\
& { }^{\circ} \mathrm{C}=\left(\frac{5^{\circ} \mathrm{C}}{9^{\circ} \mathrm{F}}\right)\left({ }^{\circ} \mathrm{F}-32^{\circ} \mathrm{F}\right)
\end{aligned}
$$

$$
\mathrm{K}={ }^{\circ} \mathrm{C}+273.15
$$

Derived Units: Volume and Its Measurement

TABLE 1.3 Some Derived Quantities

Quantity	Definition	Derived Unit (Name)
Area	Length times length	m^{2}
Volume	Area times length	m^{3}
Density	Mass per unit volume	$\mathrm{kg} / \mathrm{m}^{3}$
Speed	Distance per unit time	m / s
Acceleration	Change in speed per unit time	$\mathrm{m} / \mathrm{s}^{2}$
Force	Mass times acceleration	$(\mathrm{kg} \cdot \mathrm{m}) / \mathrm{s}^{2}($ newton, N$)$
Pressure	Force per unit area	$\mathrm{kg} /\left(\mathrm{m} \cdot \mathrm{s}^{2}\right)($ pascal, Pa$)$
Energy	Force times distance	$\left(\mathrm{kg} \cdot \mathrm{m}^{2}\right) / \mathrm{s}^{2}($ joule, J$)$

Each cubic meter contains 1000 cubic decimeters (liters).

$$
\begin{aligned}
1 \mathrm{~m}^{3} & =1000 \mathrm{dm}^{3} \\
1 \mathrm{dm}^{3} & =1 \mathrm{~L} \\
& =1000 \mathrm{~cm}^{3} \\
1 \mathrm{~cm}^{3} & =1 \mathrm{~mL}
\end{aligned}
$$

$$
1 \mathrm{dm}
$$

$1 \mathrm{dm}^{3}$
Each cubic decimeter contains 1000 cubic centimeters (milliliters).

Derived Units: Volume and Its Measurement

Derived Units: Density and Its Measurement

TABLE 1.4 Densities of Some Common Materials

Substance	Density $\left(\mathrm{g} / \mathrm{cm}^{3}\right)$
Ice $\left(0^{\circ} \mathrm{C}\right)$	0.917
Water $\left(3.98^{\circ} \mathrm{C}\right)$	1.0000
Gold	19.31
Helium $\left(25^{\circ} \mathrm{C}\right)$	0.000164
Air $\left(25^{\circ} \mathrm{C}\right)$	0.001185
Human fat	0.94
Human muscle	1.06
Cork	$0.22-0.26$
Balsa wood	0.12
Earth	5.54

Typical volume units $\left\{\begin{array}{l}\text { Solids: } \mathrm{cm}^{3} \\ \text { Liquids: } \mathrm{mL} \\ \text { Gases: } \mathrm{L}\end{array} \quad\right.$ Density $=\frac{\text { Mass }}{\text { Volume }}$

Accuracy, Precision, and Significant Figures in Measurement

Accuracy: How close to the true value a given measurement is

Precision: How well a number of independent measurements agree with each other

Accuracy, Precision, and Significant Figures in Measurement

Mass of a Tennis Ball
 (True mass = 54.441778 g)

Measurement \#	Bathroom Scale	Lab Balance	Analytical Balance
1	0.1 kg	54.4 g	54.4418 g
2	0.0 kg	54.5 g	54.4417 g
3	0.1 kg	54.3 g	54.4418 g
(average)	$(0.07 \mathrm{~kg})$	$(54.4 \mathrm{~g})$	$(54.4418 \mathrm{~g})$

good accuracy good precision

Accuracy, Precision, and Significant Figures in Measurement

Mass of a Tennis Ball
 (True mass = 54.441778 g)

| Measurement \# | Bathroom Scale | Lab Balance |
| :---: | :---: | :---: | Analytical Balance

good accuracy poor precision

Accuracy, Precision, and Significant Figures in Measurement

Mass of a Tennis Ball
(True mass =54.441 778 g)

Measurement \#	Bathroom Scale	Lab Balance	Analytical Balance
1	0.1 kg	54.4 g	54.4418 g
2	0.0 kg	54.5 g	54.4417 g
3	0.1 kg	54.3 g	54.4418 g
(average)	$(0.07 \mathrm{~kg})$	$(54.4 \mathrm{~g})$	$(54.4418 \mathrm{~g})$

poor accuracy
poor precision

Accuracy, Precision, and Significant Figures in Measurement

Significant Figures: The total number of digits recorded for a measurement

Generally, the last digit in a reported measurement is uncertain (estimated).

Exact numbers and relationships (7 days in a week, 30 students in a class, etc.) effectively have an infinite number of significant figures.

Accuracy, Precision, and Significant Figures in Measurement

Rules for Counting Significant Figures (Left-to-Right):

1. Zeros in the middle of a number are like any other digit; they are always significant.

4.803 cm Four SFs

Accuracy, Precision, and Significant Figures in Measurement

Rules for Counting Significant Figures (Left-to-Right):

1. Zeros in the middle of a number are like any other digit; they are always significant.
2. Zeros at the beginning of a number are not significant (placeholders).
0.00661 g Three SFs (or $6.61 \times 10^{-3} \mathrm{~g}$)

Accuracy, Precision, and Significant Figures in Measurement

Rules for Counting Significant Figures (Left-to-Right):

1. Zeros in the middle of a number are like any other digit; they are always significant.
2. Zeros at the beginning of a number are not significant (placeholders).
3. Zeros at the end of a number and after the decimal point are always significant.
55.220 K Five SFs

Accuracy, Precision, and Significant Figures in Measurement

Rules for Counting Significant Figures (Left-to-Right):

1. Zeros in the middle of a number are like any other digit; they are always significant.
2. Zeros at the beginning of a number are not significant (placeholders).
3. Zeros at the end of a number and after the decimal point are always significant.
4. Zeros at the end of a number and before the decimal point may or may not be significant.

$$
34,200 \mathrm{~m} \quad ? \mathrm{SFs}
$$

Rounding Numbers

Math Rules for Keeping Track of Significant Figures:

- Multiplication or Division: The answer can't have more significant figures than any of the original numbers.

$$
\begin{aligned}
& \text { Three SFs } \begin{aligned}
-\frac{278 \mathrm{mi}}{11.70 \mathrm{gal}} & =23.760684 \mathrm{mi} / \mathrm{gal} \\
& =23.8 \mathrm{mi} / \mathrm{gal} \\
&
\end{aligned} \\
& \text { Three SFs }
\end{aligned}
$$

Rounding Numbers

Math Rules for Keeping Track of Significant Figures:

- Multiplication or Division: The answer can't have more significant figures than any of the original numbers.
- Addition or Subtraction: The answer can't have more digits to the right of the decimal point than any of the original numbers.

$$
\begin{aligned}
& 3.18 \longrightarrow \text { Two decimal places } \\
& +0.01315 \longrightarrow \text { Five decimal places } \\
& 3.19315 \\
& 3.19 \longrightarrow \text { Two decimal places }
\end{aligned}
$$

Rounding Numbers

Rules for Rounding off Numbers:

1. If the first digit you remove is less than 5 , round down by dropping it and all following numbers.
$5.664525=5.66$

Rounding Numbers

Rules for Rounding off Numbers:

1. If the first digit you remove is less than 5 , round down by dropping it and all following numbers.
2. If the first digit you remove is 6 or greater, round up by adding 1 to the digit on the left.
$5.664525=5.7$

Rounding Numbers

Rules for Rounding off Numbers:

1. If the first digit you remove is less than 5 , round down by dropping it and all following numbers.
2. If the first digit you remove is 6 or greater, round up by adding 1 to the digit on the left.
3. If the first digit you remove is 5 and there are more nonzero digits following, round up.
$5.664525=5.665$

Rounding Numbers

Rules for Rounding off Numbers:

1. If the first digit you remove is less than 5 , round down by dropping it and all following numbers.
2. If the first digit you remove is 6 or greater, round up by adding 1 to the digit on the left.
3. If the first digit you remove is 5 and there are more nonzero digits following, round up.
4. If the digit you remove is a 5 with nothing following, round down.
$5.664525=5.66452$

Calculations: Converting from One Unit to Another

Dimensional Analysis: A method that uses a conversion factor to convert a quantity expressed in one unit to an equivalent quantity in a different unit

Conversion Factor: Expresses the relationship between two different units

Original quantity \times Conversion factor $=$ Equivalent quantity

Calculations: Converting from One Unit to Another

Relationship: $1 \mathrm{~m}=39.37 \mathrm{in}$.

Conversion Factor: $\frac{1 \mathrm{~m}}{39.37 \mathrm{in} .}$ or $\frac{39.37 \mathrm{in} .}{1 \mathrm{~m}}$

Converts
in. to m

Calculations: Converting from One Unit to Another

69.5 in. $\times \frac{1 \mathrm{~m}}{39.37 \mathrm{~m} .}=1.77 \mathrm{~m}$
Starting quantity
Equivalent quantity
Conversion factor

