

Lecture Presentation

Chapter 3

Mass
 Relationships in Chemical Reactions

John E. McMurry Robert C. Fay

Representing Chemistry on Different Levels

$$
2 \mathrm{H}_{2}(g)+\mathrm{O}_{2}(g) \longrightarrow 2 \mathrm{H}_{2} \mathrm{O}(\Lambda)
$$

Microscopic:
2 molecules of hydrogen gas react with 1 molecule of oxygen gas to yield 2 molecules of liquid water.

Representing Chemistry on Different Levels

$$
2 \mathrm{H}_{2}(g)+\mathrm{O}_{2}(g) \longrightarrow 2 \mathrm{H}_{2} \mathrm{O}(\Lambda)
$$

Microscopic:
2 molecules of hydrogen gas react with 1 molecule of oxygen gas to yield 2 molecules of liquid water.

Macroscopic: 2 moles of hydrogen gas react with 1 mole of oxygen gas to yield 2 moles of liquid water.

Balancing Chemical Equations

A balanced chemical equation shows that the law of conservation of mass is adhered to.

In a balanced chemical equation, the numbers and kinds of atoms on both sides of the reaction arrow are identical.

$$
\begin{aligned}
& 2 \mathrm{Na}(s)+\mathrm{Cl}_{2}(g) \longrightarrow 2 \mathrm{NaCl}(s) \\
& \text { left side: right side: }
\end{aligned}
$$

$\begin{array}{ll}2 \mathrm{Na} & 2 \mathrm{Na} \\ 2 \mathrm{Cl} & 2 \mathrm{Cl}\end{array}$

Balancing Chemical Equations

$\mathrm{Hg}\left(\mathrm{NO}_{3}\right)_{2}(a q)+2 \mathrm{KI}(a q) \longrightarrow \mathrm{Hgl}_{2}(s)+2 \mathrm{KNO}_{3}(a q)$
left side:
right side:
1 Hg
2 N
6 O
2 K
2 I

1 Hg
21
2 K
2 N
60

Balancing Chemical Equations

1. Write the unbalanced equation using the correct chemical formula for each reactant and product.

$$
\mathrm{H}_{2}(g)+\mathrm{O}_{2}(g) \longrightarrow \mathrm{H}_{2} \mathrm{O}(\Omega)
$$

2. Find suitable coefficients-the numbers placed before formulas to indicate how many formula units of each substance are required to balance the equation.

$$
2 \mathrm{H}_{2}(g)+\mathrm{O}_{2}(g) \longrightarrow 2 \mathrm{H}_{2} \mathrm{O}(I)
$$

Balancing Chemical Equations

3. Reduce the coefficients to their smallest wholenumber values, if necessary, by dividing them all by a common divisor.

$$
\begin{gathered}
4 \mathrm{H}_{2}(g)+2 \mathrm{O}_{2}(g) \longrightarrow 4 \mathrm{H}_{2} \mathrm{O}() \\
\downarrow \\
\text { divide all by } 2 \\
\downarrow \\
2 \mathrm{H}_{2}(g)+\mathrm{O}_{2}(g) \longrightarrow 2 \mathrm{H}_{2} \mathrm{O}()
\end{gathered}
$$

Balancing Chemical Equations

4. Check your answer by making sure that the numbers and kinds of atoms are the same on both sides of the equation.

$$
2 \mathrm{H}_{2}(g)+\mathrm{O}_{2}(g) \longrightarrow 2 \mathrm{H}_{2} \mathrm{O}(I)
$$

left side:
right side:
$\begin{array}{ll}4 \mathrm{H} & 4 \mathrm{H} \\ 2 \mathrm{O} & 2 \mathrm{O}\end{array}$

Chemical Arithmetic: Stoichiometry

Molecular Mass: Sum of atomic masses of all atoms in a molecule

Formula Mass: Sum of atomic masses of all atoms in a formula unit of any compound, molecular or ionic

HCI: $1.0 \mathrm{amu}+35.5 \mathrm{amu}=36.5 \mathrm{amu}$
$\mathrm{C}_{2} \mathrm{H}_{4}: 2(12.0 \mathrm{amu})+4(1.0 \mathrm{amu})=28.0 \mathrm{amu}$

Chemical Arithmetic: Stoichiometry

$\mathrm{HCl}: 1 \mathrm{~mole}=36.5 \mathrm{~g}$
6.022×10^{23} molecules $=36.5 \mathrm{~g}$
$\mathrm{C}_{2} \mathrm{H}_{4}: 1 \mathrm{~mole}=28.0 \mathrm{~g}$
6.022×10^{23} molecules $=28.0 \mathrm{~g}$

Chemical Arithmetic: Stoichiometry

Stoichiometry: The chemical arithmetic needed for mole-mass conversions

$$
a \mathrm{~A}+b \mathrm{~B} \longrightarrow c \mathrm{C}+d \mathrm{D}
$$

Chemical Arithmetic: Stoichiometry

$2 \mathrm{NaOH}(a q)+\mathrm{Cl}_{2}(g) \longrightarrow \mathrm{NaOCl}(a q)+\mathrm{NaCl}(a q)+\mathrm{H}_{2} \mathrm{O}(\Omega)$
How many grams of NaOH are needed to react with $25.0 \mathrm{~g} \mathrm{Cl}_{2}$?

Chemical Arithmetic: Stoichiometry

$2 \mathrm{NaOH}(a q)+\mathrm{Cl}_{2}(g) \longrightarrow \mathrm{NaOCl}(a q)+\mathrm{NaCl}(a q)+\mathrm{H}_{2} \mathrm{O}(\Omega)$
How many grams of NaOH are needed to react with $25.0 \mathrm{~g} \mathrm{Cl}_{2}$?

$$
\begin{aligned}
& 25.0 \mathrm{~g} \mathrm{Cl}_{2} \times \frac{1 \mathrm{~mol} \mathrm{Cl}_{2}}{70.9 \mathrm{~g} \mathrm{Cl}_{2}} \times \frac{2 \mathrm{~mol} \mathrm{NaOH}}{1 \mathrm{~mol} \mathrm{Cl}_{2}} \times \frac{40.0 \mathrm{~g} \mathrm{NaOH}}{1 \mathrm{~mol} \mathrm{NaOH}} \\
& =28.2 \mathrm{~g} \mathrm{NaOH}
\end{aligned}
$$

Yields of Chemical Reactions

Actual Yield: The amount actually formed in a reaction
Theoretical Yield: The amount predicted by calculations

Percent Yield $=\frac{\text { Actual yield of product }}{\text { Theoretical yield of product }} \times 100 \%$

Reactions with Limiting Amounts of

Reactants

Limiting Reactant: The reactant that is present in limiting amount. The extent to which a chemical reaction takes place depends on the limiting reactant.

Excess Reactant: Any of the other reactants still present after determination of the limiting reactant

Reactions with Limiting Amounts of Reactants

At a high temperature, ethylene oxide reacts with water to form ethylene glycol, which is an automobile antifreeze and a starting material in the preparation of polyester polymers:

$$
\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}(a q)+\mathrm{H}_{2} \mathrm{O}(\Lambda) \longrightarrow \mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}_{2}(\Lambda)
$$

Because water is so cheap and abundant, it is used in excess when compared to ethylene oxide. This ensures that all of the relatively expensive ethylene oxide is entirely consumed.

Reactions with Limiting Amounts of
 Reactants

At a high temperature, ethylene oxide reacts with water to form ethylene glycol, which is an automobile antifreeze and a starting material in the preparation of polyester polymers:

If 3 mol of ethylene oxide react with 5 mol of water, which reactant is limiting and which reactant is present in excess?

Reactions with Limiting Amounts of

Reactants

At a high temperature, ethylene oxide reacts with water to form ethylene glycol, which is an automobile antifreeze and a starting material in the preparation of polyester polymers:

$$
\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\Lambda) \longrightarrow \mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}_{2}(\Lambda)
$$

Reactions with Limiting Amounts of Reactants

Lithium oxide is used aboard the space shuttle to remove water from the air supply according to the equation

$$
\mathrm{Li}_{2} \mathrm{O}(s)+\mathrm{H}_{2} \mathrm{O}(g) \longrightarrow 2 \mathrm{LiOH}(s)
$$

If 80.0 g of water is to be removed and 65.0 g of $\mathrm{Li}_{2} \mathrm{O}$ is available, which reactant is limiting? How many grams of excess reactant remain? How many grams of LiOH are produced?

Reactions with Limiting Amounts of Reactants

$$
\mathrm{Li}_{2} \mathrm{O}(s)+\mathrm{H}_{2} \mathrm{O}(g) \longrightarrow 2 \mathrm{LiOH}(s)
$$

Which reactant is limiting?
Amount of $\mathrm{H}_{2} \mathrm{O}$ that will react with $65.0 \mathrm{~g} \mathrm{Li}_{2} \mathrm{O}$:
$65.0 \mathrm{~g} \mathrm{Li}_{2} \mathrm{O} \times \frac{1 \mathrm{~mol} \mathrm{Li}_{2} \mathrm{O}}{29.9 \mathrm{~g} \mathrm{Li}_{2} \mathrm{O}} \times \frac{1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}{1 \mathrm{~mol} \mathrm{Li}_{2} \mathrm{O}}=2.17 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}$
Amount of $\mathrm{H}_{2} \mathrm{O}$ given:
$80.0 \mathrm{~g} \mathrm{H}_{2} \mathrm{O} \times \frac{1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}{18.0 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}}=4.44 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O} \quad \mathrm{Li}_{2} \mathrm{O}$ is limiting.

Reactions with Limiting Amounts of Reactants

$$
\mathrm{Li}_{2} \mathrm{O}(s)+\mathrm{H}_{2} \mathrm{O}(g) \longrightarrow 2 \mathrm{LiOH}(s)
$$

How many grams of excess $\mathrm{H}_{2} \mathrm{O}$ remain?
$2.17 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O} \times \frac{18.0 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}}{1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}=39.1 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}$ (consumed)

Reactions with Limiting Amounts of Reactants

$$
\mathrm{Li}_{2} \mathrm{O}(s)+\mathrm{H}_{2} \mathrm{O}(g) \longrightarrow 2 \mathrm{LiOH}(s)
$$

How many grams of LiOH are produced?

$$
2.17 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O} \times \frac{2 \mathrm{~mol} \mathrm{LiOH}}{1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}} \times \frac{23.9 \mathrm{~g} \mathrm{LiOH}}{1 \mathrm{~mol} \mathrm{LiOH}}=104 \mathrm{~g} \mathrm{LiOH}
$$

Percent Composition and Empirical Formulas

Percent Composition: Expressed by identifying the elements present and giving the mass percent of each

Empirical Formula: It tells the smallest whole-number ratios of the atoms in the compound.

Molecular Formula: It tells the actual numbers of atoms in a compound. It can be either the empirical formula or a multiple of it.

$$
\text { Multiple }=\frac{\text { Molecular mass }}{\text { Empirical formula mass }}
$$

Percent Composition and Empirical Formulas

A colorless liquid has a composition of 84.1% carbon and 15.9% hydrogen by mass. Determine the empirical formula. Also, assuming the molar mass of this compound is $114.2 \mathrm{~g} / \mathrm{mol}$, determine the molecular formula of this compound.

Mass percents \longrightarrow Moles \longrightarrow Mole ratios \longrightarrow Subscripts

Molar
masses

Relative mole ratios

Percent Composition and Empirical Formulas

Assume 100.0 g of the substance: Mole of carbon:

$$
84.1 \mathrm{~g} \mathrm{C} \times \frac{1 \mathrm{~mol} \mathrm{C}}{12.0 \mathrm{~g} \mathrm{C}}=7.01 \mathrm{~mol} \mathrm{C}
$$

Mole of hydrogen:

$$
15.9 \mathrm{~g} \mathrm{H} \times \frac{1 \mathrm{~mol} \mathrm{H}}{1.0 \mathrm{~g} \mathrm{H}}=15.9 \mathrm{~mol} \mathrm{H}
$$

Percent Composition and Empirical Formulas

Empirical formula:
$\underbrace{\mathrm{C}_{7.01} \mathrm{H}_{15.9}}_{\text {smallest value for the ratio }} \quad \mathrm{C}_{7.01}^{7.01} \frac{\mathrm{H}_{15.9}}{7.01}=\mathrm{C}_{1} \mathrm{H}_{2.27}$
$\mathrm{C}_{1} \mathrm{H}_{2.27}$
L need whole numbers
$\mathrm{C}_{1 \times 4} \mathrm{H}_{2.27 \times 4}=\mathrm{C}_{4} \mathrm{H}_{9}$

Molecular formula:

$$
\text { multiple }=\frac{114.2}{57.0}=2
$$

$$
\mathrm{C}_{4 \times 2} \mathrm{H}_{9 \times 2}=\mathrm{C}_{8} \mathrm{H}_{18}
$$

Determining Empirical Formulas: Elemental Analysis

Combustion Analysis: A compound of unknown composition is burned with oxygen to produce the volatile combustion products CO_{2} and $\mathrm{H}_{2} \mathrm{O}$, which are separated and have their amounts determined by an automated instrument.

Determining Molecular Masses: Mass Spectrometry

(a) A mass spectrometer

(b) A mass spectrum for naphthalene

