

Lecture Presentation

Chapter 6

Ionic Compounds: Periodic Trends and Bonding Theory

John E. McMurry Robert C. Fay

Instructor's Resource Materials (Download only) for *Chemistry*, 7e John E. McMurry, Robert C. Fay, Jill Robinson

Na: $1s^2 2s^2 2p^6 3s^1 - 1e^- \rightarrow Na^+: 1s^2 2s^2 2p^6$

CI: $1s^2 2s^2 2p^6 3s^2 3p^5 + 1e^- \longrightarrow$ **CI**⁻: $1s^2 2s^2 2p^6 3s^2 3p^6$

Group 1a atom: [Noble gas] $ns^1 - 1e^- \rightarrow$

Group 1a ion+: [Noble gas]

Group 2a atom: [Noble gas] $ns^2 -2e^- \rightarrow$

Group 2a ion²⁺: [Noble gas]

Instructor's Resource Materials (Download only) for *Chemistry*, 7e John E. McMurry, Robert C. Fay, Jill Robinson

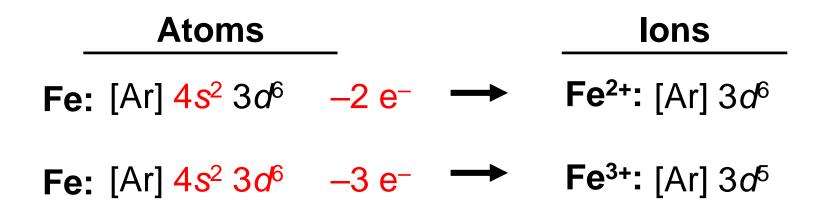
© 2016 Pearson Education, Inc.

Na: $1s^2 2s^2 2p^6 3s^1 -1 e^- \rightarrow Na^+: 1s^2 2s^2 2p^6$

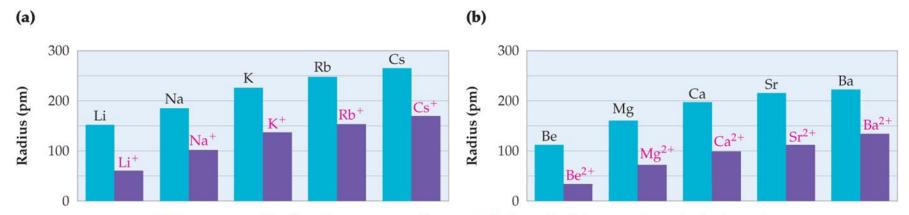
CI: $1s^2 2s^2 2p^6 3s^2 3p^5 + 1e^- \longrightarrow$ **CI:** $1s^2 2s^2 2p^6 3s^2 3p^6$

Group 6a atom: [Noble gas] $ns^2 np^4 + 2e^- \rightarrow$

Group 6a ion²⁻: [Noble gas] ns² np⁶

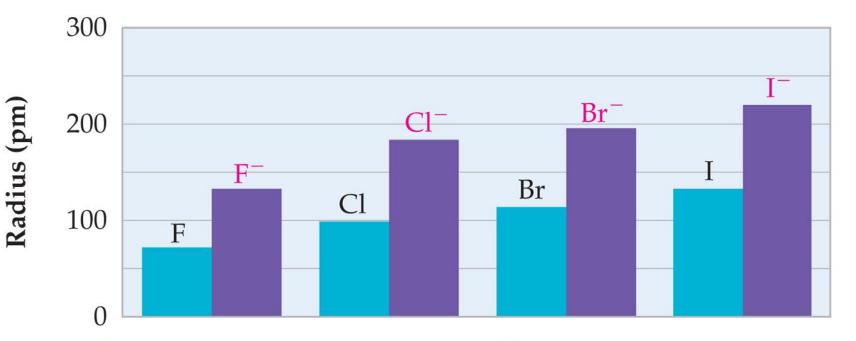

Group 7a atom: [Noble gas] $ns^2 np^5 + 1 e^- \rightarrow$

Group 7a ion⁻: [Noble gas] *ns*² *np*⁶


TABLE 6.1	Some Common Main-Group lons and Their Noble-Gas Electron
Configuratio	ns

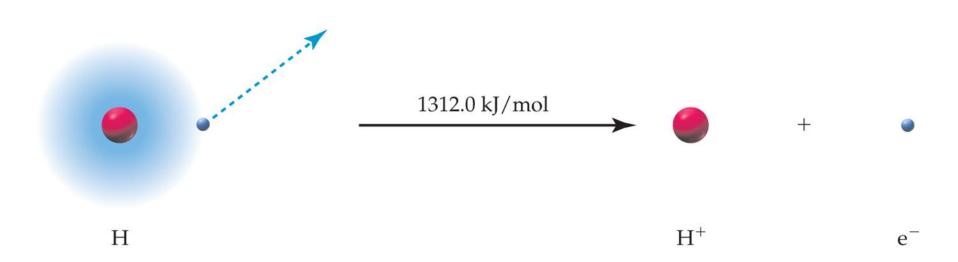
Group 1A	Group 2A	Group 3A	Group 6A	Group 7A	Electron Configuration
H^{+}					[None]
H^{-}					[He]
Li^+	Be ²⁺				[He]
Na ⁺	Mg^{2+}	Al^{3+}	O ^{2–}	F^{-}	[Ne]
K^+	Ca^{2+}	*Ga ³⁺	S^{2-}	Cl ⁻	[Ar]
Rb^+	Sr^{2+}	*In ³⁺	Se ^{2–}	Br ⁻	[Kr]
Cs^+	Ba ²⁺	*Tl ³⁺	Te ^{2–}	I_	[Xe]

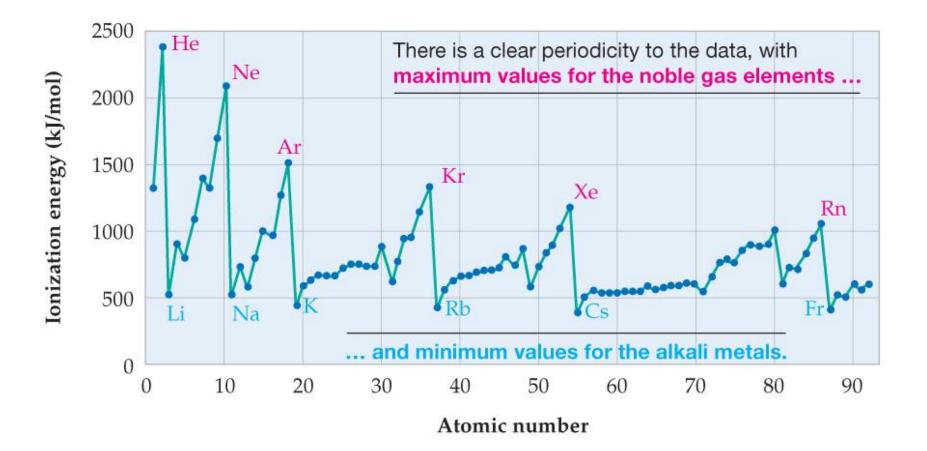
*These ions don't have a true noble-gas electron configuration because they have an additional filled *d* subshell.

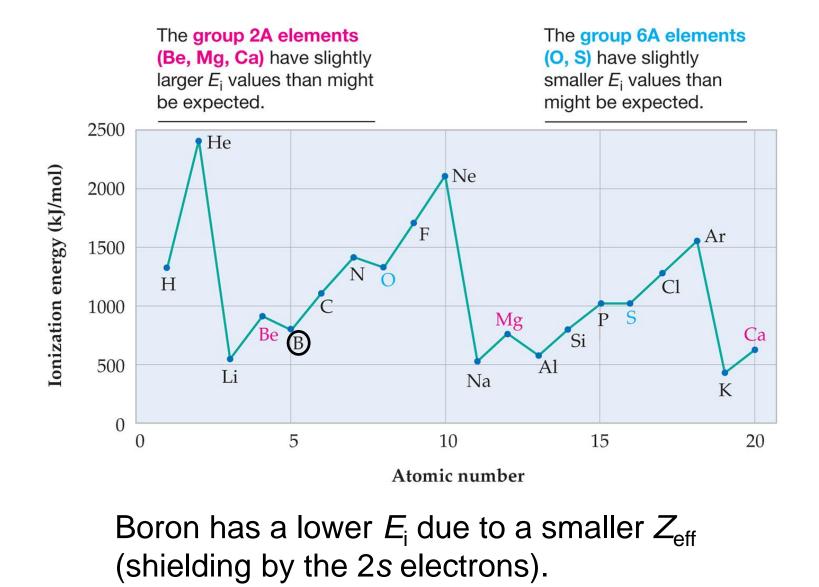


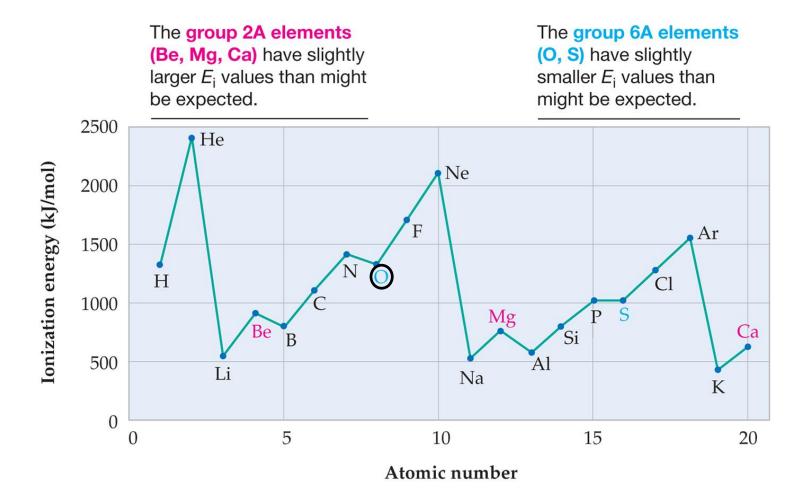
Ionic Radii

Cations are smaller than the corresponding **neutral atoms**, both because the principal quantum number of the valence-shell electrons is smaller for the cations than it is for the neutral atoms and because Z_{eff} is larger.


Ionic Radii




Anions are larger than their **neutral atoms** because of additional electron–electron repulsions and a decrease in Z_{eff} .


Instructor's Resource Materials (Download only) for *Chemistry*, 7e John E. McMurry, Robert C. Fay, Jill Robinson

Ionization Energy (E_i) : The amount of energy necessary to remove the highest-energy electron from an isolated neutral atom in the gaseous state

Oxygen has a lower E_i , since the first electron is removed from a filled orbital.

Higher Ionization Energies

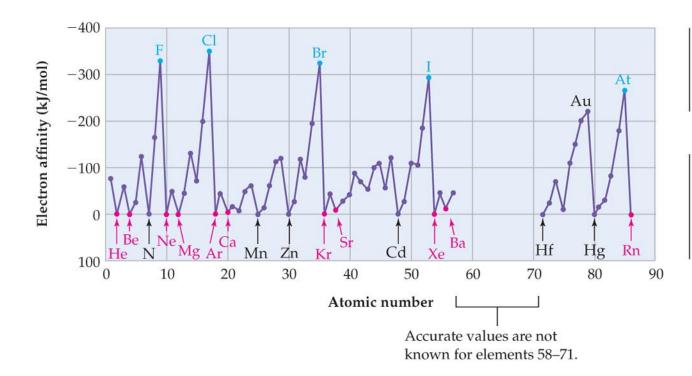

 $M + energy \longrightarrow M^{+} + e^{-}$ $M^{+} + energy \longrightarrow M^{2+} + e^{-}$ $M^{2+} + energy \longrightarrow M^{3+} + e^{-}$

	TABLE 6.2 Higher Ionization Energies (kJ/mol) for Main-Group Third-Row Elements							
Group	1A	2A	3A	4A	5A	6A	7 A	8A
E _i Number	Na	Mg	Al	Si	Р	S	Cl	Ar
E _{i1}	496	738	578	787	1,012	1,000	1,251	1,520
E _{i2}	4,562	1,451	1,817	1,577	1,903	2,251	2,297	2,665
E_{i3}	6,912	7,733	2,745	3,231	2,912	3,361	3,822	3,931
E_{i4}	9,543	10,540	11,575	4,356	4,956	4,564	5,158	5,770
E_{i5}	13,353	13,630	14,830	16,091	6,273	7,013	6,540	7,238
E_{i6}	16,610	17,995	18,376	19,784	22,233	8,495	9 <i>,</i> 458	8,781
E_{i7}	20,114	21,703	23,293	23,783	25,397	27,106	11,020	11,995

The zigzag line marks the large jumps in ionization energies.

Electron Affinity

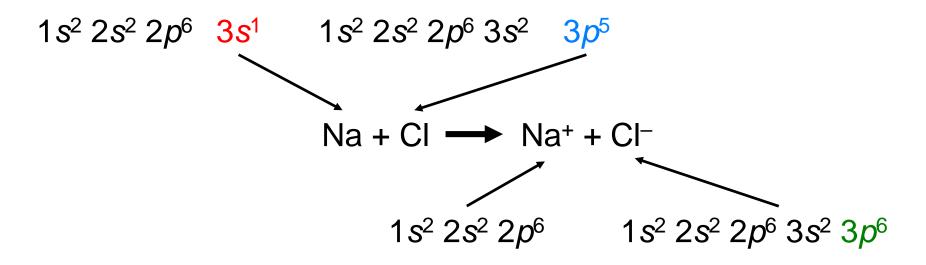
Electron Affinity (E_{ea}) : The energy change that occurs when an electron is added to an isolated atom in the gaseous state

A negative value for E_{ea} , such as those for the group 7A elements (halogens), means that energy is released when an electron adds to an atom.

A value of zero, such as those for the group 2A elements (alkaline earths) and group 8A elements (noble gases), means that energy is absorbed but the exact amount can't be measured.

Octet Rule

Octet rule: Main-group elements tend to undergo reactions that leave them with eight outer-shell electrons. That is, main-group elements react so that they attain a noble-gas electron configuration with filled *s* and *p* sublevels in their valence electron shell.


Octet Rule

Octet rule: Main-group elements tend to undergo reactions that leave them with eight outer-shell electrons. That is, main-group elements react so that they attain a noble-gas electron configuration with filled *s* and *p* sublevels in their valence electron shell.

Metals tend to have **low** E_i and **low** E_{ea} . They tend to *lose* one or more electrons.

Nonmetals tend to have **high** E_i and **high** E_{ea} . They tend to *gain* one or more electrons.

Ionic Bonds and the Formation of Ionic Solids

Ionic Bonds and the Formation of Ionic Solids

Ionic Bonds and the Formation of Ionic Solids

Born-Haber Cycle						
Step 1:	$Na(s) \longrightarrow Na(g)$	+107.3 kJ/mol				
Step 2:	$\frac{1}{2}\operatorname{Cl}_2(g) \longrightarrow \operatorname{Cl}(g)$	+122 kJ/mol				
Step 3:	Na(g) → Na+(g) + e ⁻	+495.8 kJ/mol				
Step 4:	$CI(g) + e^{-} \longrightarrow CI^{-}(g)$	–348.6 kJ/mol				
Step 5:	$Na^+(g) + Cl^-(g) \longrightarrow NaCl(s)$	_787 kJ/mol				
	$Na(s) + Cl_2(g) \longrightarrow NaCl(s)$	–411 kJ/mol				

Lattice Energies in Ionic Solids

Lattice Energy (U): The amount of energy that must be supplied to break up an ionic solid into individual gaseous ions

TABLE 6.3	Lattice Energies of Some Ionic Solids (kJ/mol)
-----------	--

	Anion				
Cation	F ⁻	Cl ⁻	Br ⁻	I_	O ²⁻
Li ⁺	1036	853	807	757	2925
Na ⁺	923	787	747	704	2695
K^+	821	715	682	649	2360
Be ²⁺	3505	3020	2914	2800	4443
Mg^{2+} Ca^{2+}	2957	2524	2440	2327	3791
Ca ²⁺	2630	2258	2176	2074	3401