

Lecture Presentation

Chapter 8

Covalent Compounds: Bonding Theories and Molecular Structure

> John E. McMurry Robert C. Fay

Instructor's Resource Materials (Download only) for *Chemistry*, 7e John E. McMurry, Robert C. Fay, Jill Robinson

Step 1

 Write an electron-dot structure for the molecule, and count the number of electron charge clouds surrounding the atom of interest.

Step 2

• Predict the geometric arrangement of charge clouds by assuming that the charge clouds are oriented in space as far away from one another as possible.

Two Charge Clouds

A CO₂ molecule is linear, with a bond angle of 180° .

An HCN molecule is linear, with a bond angle of 180°.

Instructor's Resource Materials (Download only) for *Chemistry*, 7e John E. McMurry, Robert C. Fay, Jill Robinson

Four Charge Clouds

A regular tetrahedron

The atom is located in the **center** of a regular tetrahedron.

The four charge clouds point to the **four corners** of the tetrahedron.

A tetrahedral molecule

The angle between any two bonds is 109.5°.

Four Charge Clouds

Instructor's Resource Materials (Download only) for *Chemistry*, 7e John E. McMurry, Robert C. Fay, Jill Robinson

© 2016 Pearson Education, Inc.

Five Charge Clouds

Five Charge Clouds

Five Charge Clouds

Instructor's Resource Materials (Download only) for *Chemistry*, 7e John E. McMurry, Robert C. Fay, Jill Robinson

Six Charge Clouds

Six Charge Clouds

Six Charge Clouds

An XeF₄ molecule has a square planar shape.

TABLE 8.1	Geometry Around Atoms with 2, 3, 4, 5, and 6 Charge Clouds				
Number of Bonds	Number of Lone Pairs	Number of Charge Clouds	Geometry and Shape	Example	
2	0	2 🔴	🔵 🥚 Linear	0=C=0	
3	0		Trigonal planar		
2	1	3	🔊 🥌 Bent	os	
4	٥	•	Tetrahedral	$\begin{bmatrix} H \\ I \\ H \\ H \end{bmatrix}$	
3	1	4	Trigonal	H-N-H	
2	2	e	Bent	н0	

Valence Bond Theory

Valence Bond Theory: A quantum mechanical model that shows how electron pairs are shared in a covalent bond

Valence Bond Theory

Valence Bond Theory: A quantum mechanical model that shows how electron pairs are shared in a covalent bond

Valence Bond Theory

- Covalent bonds are formed by overlap of atomic orbitals, each of which contains one electron of opposite spin.
- Each of the bonded atoms maintains its own atomic orbitals, but the electron pair in the overlapping orbitals is shared by both atoms.
- The greater the amount of overlap, the stronger the bond.

How can the bonding in CH₄ be explained?

4 valence electrons 2 unpaired electrons

Carbon: ground-state electron configuration

How can the bonding in CH₄ be explained?

4 valence electrons2 unpaired electrons

Energy

Carbon: ground-state electron configuration Carbon: excited-state electron configuration

How can the bonding in CH_4 be explained?

4 nonequivalent orbitals

excited-state electron configuration

Instructor's Resource Materials (Download only) for *Chemistry*, 7e John E. McMurry, Robert C. Fay, Jill Robinson

How can the bonding in CH₄ be explained?

4 equivalent orbitals

The hybrid orbitals lie in a plane at angles of 120° to one another, and one unhybridized *p* orbital remains, oriented at a 90° angle to the *sp*² hybrids. The **large lobes** of the hybrid orbitals are shown in green, and the small lobes are not shown.

The hybrid orbitals lie in a plane at angles of 120° to one another, and one unhybridized *p* orbital remains, oriented at a 90° angle to the *sp*² hybrids. The **large lobes** of the hybrid orbitals are shown in green, and the small lobes are not shown.

... and one π bond formed by sideways overlap of p orbitals. The π bond has two regions of orbital overlap — **one above** and **one below** the internuclear axis.

The combination of one s and one p orbital gives **two** sp hybrid orbitals oriented 180° apart.

In addition, two unhybridized *p* **orbitals** remain, oriented at 90° angles to the *sp* hybrids.

Two mutually perpendicular π bonds form by sideways overlap of *p* orbitals.

TABLE 8.2 Hybrid Orbitals and Their Geometry

Number of Charge Clouds	Arrangement of Charge Clouds	Hybridization		
2	Linear	sp		
3	Trigonal planar	sp^2		
4	Tetrahedral	sp ³		

In **gases**, the particles feel little attraction for one another and are free to move about randomly.

In **liquids**, the particles are held close together by attractive forces but are free to move around one another.

In **solids**, the particles are held in an ordered arrangement.

H 2.1							Elec	ctrone	gativi from	ty							He		
Li 1.0	Be 1.5		left to right.						B 2.0	C 2.5	N 3.0	O 3.5	F 4.0	Ne					
Na 0.9	Mg 1.2									Al 1.5	Si 1.8	Р 2.1	S 2.5	Cl 3.0	Ar		Electronegativity		
K 0.8	Ca 1.0	Sc 1.3	Ti 1.5	V 1.6	Cr 1.6	Mn 1.5	Fe 1.8	Co 1.9	Ni 1.9	Cu 1.9	Zn 1.6	Ga 1.6	Ge 1.8	As 2.0	Se 2.4	Br 2.8	Kr		top to bottom.
Rb 0.8	Sr 1.0	Y 1.2	Zr 1.4	Nb 1.6	Mo 1.8	Tc 1.9	Ru 2.2	Rh 2.2	Pd 2.2	Ag 1.9	Cd 1.7	In 1.7	Sn 1.8	Sb 1.9	Te 2.1	I 2.5	Xe		
Cs 0.7	Ba 0.9	Lu 1.1	Hf 1.3	Та 1.5	W 1.7	Re 1.9	Os 2.2	Ir 2.2	Pt 2.2	Au 2.4	Hg 1.9	Tl 1.8	Pb 1.9	Bi 1.9	Po 2.0	At 2.1	Rn		·
						7		X			1							1	

C—CI bond has a **bond dipole** because of a difference in electronegativities.

Instructor's Resource Materials (Download only) for *Chemistry*, 7e John E. McMurry, Robert C. Fay, Jill Robinson

The individual bond polarities **do not** cancel. Therefore, the molecule has a dipole moment. In other words, the molecule is **polar**.

The individual bond polarities cancel. Therefore, the molecule does not have a dipole moment. In other words, the molecule is **nonpolar**.

Intermolecular Forces: Attractions between "molecules" that hold them together. These forces are electrical in origin and result from the mutual attraction of unlike charges or the mutual repulsion of like charges.

Types of Intermolecular Forces

- Ion–dipole forces
- Van der Waals forces
 - Dipole–dipole forces
 - London dispersion forces
 - Hydrogen bonds

Ion–Dipole Forces: The result of electrical interactions between an ion and the partial charges on a polar molecule

Polar molecules orient toward ions so that the **positive end** of the dipole is near an **anion** and ...

... the **negative end** of the dipole is near a **cation**.

Dipole–Dipole Forces: The result of electrical interactions among dipoles on neighboring molecules

Polar molecules **attract** one another when they orient with unlike charges close together, but ...

... they **repel** one another when they orient with like charges together.

Dipole–Dipole Forces

TABLE 8.4	Comparison of Molecular	Weights, Dipole Moments	, and Boiling Points
Substance	Mol. Wt.	Dipole Moment (D)	bp (K)
CH ₃ CH ₂ CH ₃	44.10	0.08	231
CH ₃ OCH ₃	46.07	1.30	248
CH ₃ CN	41.05	3.93	355

As the *dipole moment increases*, the *intermolecular forces increase*.

As the *intermolecular forces increase*, the *boiling point increases*.

Instructor's Resource Materials (Download only) for *Chemistry*, 7e John E. McMurry, Robert C. Fay, Jill Robinson

London Dispersion Forces: The result of the motion of electrons that gives the molecule a short-lived dipole moment. This induces temporary dipoles in neighboring molecules.

Averaged over time, the electron distribution in a Br₂ molecule is **symmetrical**.

At any given instant, the electron distribution in a molecule may be **unsymmetrical**, resulting in a temporary dipole and inducing a complementary attractive dipole in neighboring molecules.

London Dispersion Forces

TABLE 8.5	Melting Points and Boiling Points of the Halogens				
Halogen	mp (K)	bp (K)			
F ₂	53.5	85.0			
Cl_2	171.6	239.1			
Br ₂	265.9	331.9			
I_2	386.8	457.5			

As the *dispersion forces* increase, the *intermolecular forces* increase. As the *intermolecular forces* increase, the *boiling point* increases.

London Dispersion Forces

Pentane (bp = 309.2 K)

Longer, **less compact molecules** like pentane feel stronger dispersion forces and consequently have higher boiling points.

2,2-Dimethylpropane (bp = 282.6 K)

More compact molecules

like 2,2-dimethylpropane feel weaker dispersion forces and have lower boiling points.

Hydrogen Bond: An attractive force between a hydrogen atom bonded to a very electronegative atom (O, N, or F) and an unshared electron pair on another electronegative atom

Hydrogen Bond

Liquid water contains a vast three-dimensional network of hydrogen bonds resulting from the attraction between positively polarized hydrogens and electron pairs on negatively polarized **oxygens**.

An **oxygen** can form two hydrogen bonds, represented by dotted lines.

A short segment of DNA

Hydrogen Bond

 TABLE 8.6
 Boiling Points of the Covalent Binary Hydrides of Groups 4A, 5A, 6A, and 7A

The boiling points generally increase with increasing molecular weight down a group of the periodic table, but the hydrides of nitrogen (NH_3) , oxygen (H_2O) , and fluorine (HF) have abnormally high boiling points because these molecules form hydrogen bonds.

TABLE 8.7 A Comparison of Intermolecular Forces

Force	Strength	Characteristics
Ion-dipole	Highly variable (10–70 kJ/ mol)	Occurs between ions and polar molecules
Dipole-dipole	Weak (3–4 kJ/mol)	Occurs between polar molecules
London dispersion	Weak (1–10 kJ/mol)	Occurs between all molecules; strength depends on size, polarizability
Hydrogen bond	Moderate (10-40 kJ/mol)	Occurs between molecules with $O - H$, $N - H$, and $F - H$ bonds

Atomic Orbital: A wave function whose square gives the probability of finding an electron within a given region of space *in an atom*

Molecular Orbital: A wave function whose square gives the probability of finding an electron within a given region of space *in a molecule*

σ bonding orbital

The additive combination of atomic 1s orbitals forms a lower-energy, **bonding molecular orbital**, σ .

The subtractive combination of atomic 1s orbitals forms a higher-energy, **antibonding molecular orbital**, σ^* , that has a **node** between the nuclei.

σ^* antibonding orbital

σ bonding orbital

The additive combination of atomic 1s orbitals forms a lower-energy, **bonding molecular orbital**, σ .

The subtractive combination of atomic 1s orbitals forms a higher-energy, **antibonding molecular orbital**, σ^* , that has a **node** between the nuclei.

σ^* antibonding orbital

Bond order =
$$\frac{(\# \text{ bonding } e^- - \# \text{ antibonding } e^-)}{2}$$

Instructor's Resource Materials (Download only) for *Chemistry*, 7e John E. McMurry, Robert C. Fay, Jill Robinson

Instructor's Resource Materials (Download only) for *Chemistry*, 7e John E. McMurry, Robert C. Fay, Jill Robinson

$$O_2 \qquad \bullet O = O \bullet$$

Diamagnetic: All electrons are spin-paired. Diamagnetic substances are weakly repelled by magnetic fields.

Paramagnetic: There is at least one unpaired electron. Paramagnetic substances are weakly attracted by magnetic fields.

Oxygen, O_2 , is predicted to be *diamagnetic* by electrondot structures and valence bond theory.

 $0 \equiv 0$ O_2

However, it is known to be paramagnetic.

Combining Valence Orbital Theory and Molecular Orbital Theory

Instructor's Resource Materials (Download only) for *Chemistry*, 7e John E. McMurry, Robert C. Fay, Jill Robinson