

Lecture Presentation

Thermochemistry: Chemical Energy

John E. McMurry Robert C. Fay

Energy and Its Conservation

Conservation of Energy Law: Energy cannot be created or destroyed; it can only be converted from one form to another.

Energy and Its Conservation

Energy and Its Conservation

Thermal Energy: The kinetic energy of molecular motion. It is measured by finding the temperature of an object.

Heat: The amount of thermal energy transferred from one object to another as the result of a temperature difference between the two

Internal Energy and State Functions

First Law of Thermodynamics: The total internal energy E of an isolated system is constant.

$$
\Delta E=E_{\text {final }}-E_{\text {initial }}
$$

The energy change is the difference between final and initial states.

$$
\Delta E=E_{\mathrm{final}}-E_{\text {initial }}
$$

Internal Energy and State Functions

$\mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})+802 \mathrm{~kJ}$ energy

$$
\Delta E=E_{\text {final }}-E_{\text {intitial }}=-802 \mathrm{~kJ}
$$

802 kJ is released when 1 mol of methane, CH_{4}, reacts with 2 mol of oxygen to produce 1 mol of carbon dioxide and 2 mol of water.

Balancing Chemical Equations

State Function: A function or property whose value depends only on the present state, or condition, of the system, not on the path used to arrive at that state

Nonstate
functions
Work expended
Money spent

Expansion Work

Expansion Work

Expansion Work: Work done as the result of a volume change in the system

Energy and Enthalpy

$$
q=\text { heat transferred } \quad \begin{aligned}
\Delta E & =q+w \\
w & =\text { work }=-P \Delta V \\
q & =\Delta E+P \Delta V
\end{aligned}
$$

Constant Volume ($\Delta V=0$): $\quad q_{v}=\Delta E$

Constant Pressure: $\quad q_{p}=\Delta E+P \Delta V$

Energy and Enthalpy

$$
q_{p}=\Delta E+P \Delta V=\Delta \boldsymbol{H}
$$

Enthalpy change
or
Heat of reaction (at constant pressure)
Enthalpy is a state function whose value depends only

$$
\begin{aligned}
\Delta H & =H_{\text {final }}-H_{\text {initial }} \\
& =H_{\text {products }}-H_{\text {reactants }}
\end{aligned}
$$ taken to arrive at that state.

Thermochemical Equations and the Thermodynamic Standard State

$$
\mathrm{C}_{3} \mathrm{H}_{8}(g)+5 \mathrm{O}_{2}(g) \longrightarrow 3 \mathrm{CO}_{2}(g)+4 \mathrm{H}_{2} \mathrm{O}(g)
$$

$$
\Delta H=-2044 \mathrm{~kJ}
$$

$$
\mathrm{C}_{3} \mathrm{H}_{8}(g)+5 \mathrm{O}_{2}(g) \longrightarrow 3 \mathrm{CO}_{2}(g)+4 \mathrm{H}_{2} \mathrm{O}()
$$

$$
\Delta H=-2220 \mathrm{~kJ}
$$

Thermochemical Equations and the Thermodynamic Standard State

Thermodynamic Standard State: Most stable form of a substance at 1 atm pressure and at a specified temperature, usually $25^{\circ} \mathrm{C} ; 1 \mathrm{M}$ concentration for all substances in solution

$$
\mathrm{C}_{3} \mathrm{H}_{8}(g)+5 \mathrm{O}_{2}(g) \longrightarrow 3 \mathrm{CO}_{2}(g)+4 \mathrm{H}_{2} \mathrm{O}(g)
$$

$$
\Delta H^{\circ}=-2044 \mathrm{~kJ}
$$

Enthalpies of Physical and Chemical Change

Enthalpy of Fusion ($\Delta \boldsymbol{H}_{\text {fusion }}$): The amount of heat necessary to melt a substance without changing its temperature

Enthalpy of Vaporization (ΔH_{vap}): The amount of heat required to vaporize a substance without changing its temperature

Enthalpy of Sublimation $\left(\Delta H_{\text {subl }}\right)$: The amount of heat required to convert a substance from a solid to a gas without going through a liquid phase

Enthalpies of Physical and Chemical Change

Enthalpies of Physical and Chemical Change

```
2Al(s)+ Fee}\mp@subsup{\textrm{O}}{3}{}(s)\longrightarrow2\textrm{Fe}(s)+\mp@subsup{\textrm{Al}}{2}{}\mp@subsup{\textrm{O}}{3}{}(s
```

$\Delta H^{\circ}=-852 \mathrm{~kJ}$

Exothermic

$$
2 \mathrm{Fe}(s)+\mathrm{Al}_{2} \mathrm{O}_{3}(s) \longrightarrow 2 \mathrm{Al}(s)+\mathrm{Fe}_{2} \mathrm{O}_{3}(s)
$$

Calorimetry and Heat Capacity

Measure the heat flow at constant pressure ($\Delta \boldsymbol{H}$).

Calorimetry and Heat Capacity

Measure the heat flow at constant volume (ΔE).

Calorimetry and Heat Capacity

Heat Capacity (C): The amount of heat necessary to raise the temperature of an object or substance a given amount

$$
C=\frac{q}{\Delta T} \quad q=C \times \Delta T
$$

Specific Heat (Capacity): The amount of heat required to raise the temperature of 1 g of a substance by $1^{\circ} \mathrm{C}$

$$
q=(\text { Specific heat }) \times(\text { Mass of substance }) \times \Delta T
$$

Calorimetry and Heat Capacity

Molar Heat Capacity (C_{m}): The amount of heat necessary to raise the temperature of 1 mol of a substance by $1^{\circ} \mathrm{C}$

$$
q=C_{\mathrm{m}} \times \text { Moles of substance } \times \Delta T
$$

Calorimetry and Heat Capacity

TABLE 9.1 Specific Heats and Molar Heat Capacities for Some Common Substances at $25^{\circ} \mathrm{C}$

Substance	Specific Heat (\boldsymbol{c}) $\mathbf{J} /\left(\mathbf{g} \cdot{ }^{\circ} \mathrm{C}\right)$	Molar Heat Capacity $\left(C_{\mathrm{m}}\right)$ $\mathrm{J} /\left(\mathrm{mol} \cdot{ }^{\circ} \mathrm{C}\right)$
Air (dry)	1.01	29.1
Aluminum	0.897	24.2
Copper	0.385	24.4
Gold	0.129	25.4
Iron	0.449	25.1
Mercury	0.140	28.0
NaCl	0.859	50.2
Water $(s)^{\mathrm{a}}$	2.03	36.6
Water (l)	4.179	75.3

[^0]
Calorimetry and Heat Capacity

Assuming that a can of soda has the same specific heat as water, calculate the amount of heat (in kilojoules) transferred when one can (about 350 g) is cooled from $25^{\circ} \mathrm{C}$ to $3^{\circ} \mathrm{C}$.
$q=($ Specific heat $) \times($ Mass of substance $) \times \Delta T$
Specific heat $=4.18 \frac{\mathrm{~J}}{\mathrm{~g}^{\circ} \mathrm{C}}$
Mass $=350 \mathrm{~g}$
Temperature change $=3^{\circ} \mathrm{C}-25^{\circ} \mathrm{C}=-22^{\circ} \mathrm{C}$

Calorimetry and Heat Capacity

Calculate the amount of heat transferred.
Heat evolved $=\frac{4.18 \mathrm{~J}}{\mathrm{~g}^{\circ} \mathrm{C}} \times 350 \mathrm{~g} \times-22{ }^{\circ} \mathrm{C}=-32000 \mathrm{~J}$

$$
-32000 \mathrm{~J} \times \frac{1 \mathrm{~kJ}}{1000 \mathrm{~J}}=-32 \mathrm{~kJ}
$$

Hess's Law

Hess's Law: The overall enthalpy change for a reaction is equal to the sum of the enthalpy changes for the individual steps in the reaction.

Haber Process

$$
3 \mathrm{H}_{2}(g)+\mathrm{N}_{2}(g) \longrightarrow 2 \mathrm{NH}_{3}(g) \quad \Delta H^{\circ}=-92.2 \mathrm{~kJ}
$$

Hess's Law

Hess's Law: The overall enthalpy change for a reaction is equal to the sum of the enthalpy changes for the individual steps in the reaction.

Multiple-Step Process

$$
\begin{aligned}
2 \mathrm{H}_{2}(g)+\mathrm{N}_{2}(g) \longrightarrow \mathrm{N}_{2} \mathrm{H}_{4}(g) & \Delta H_{1}=? \\
\mathrm{~N}_{2} \mathrm{H}_{4}(g)+\mathrm{H}_{2}(g) \longrightarrow 2 \mathrm{NH}_{3}(g) & \Delta H_{2}=-187.6 \mathrm{~kJ} \\
\hline 3 \mathrm{H}_{2}(g)+\mathrm{N}_{2}(g) \longrightarrow 2 \mathrm{NH}_{3}(g) & \Delta H_{1+2}^{\circ}=-92.2 \mathrm{~kJ}
\end{aligned}
$$

Hess's Law

$$
\begin{aligned}
& \Delta H_{1}{ }_{1}+\Delta H_{2}^{\circ}=\Delta H_{1+2}{ }_{1+2} \begin{aligned}
\Delta H_{1}^{\circ} & =\Delta H_{1+2}^{\circ}-\Delta H_{2} \\
& =-92.2 \mathrm{~kJ}-(-187.6 \mathrm{~kJ})=+95.4 \mathrm{~kJ}
\end{aligned} \\
& =
\end{aligned}
$$

Standard Heats of Formation

Standard Heat of Formation ($\Delta \boldsymbol{H}_{\ddagger}^{\circ}$): The enthalpy change for the formation of 1 mol of a substance in its standard state from its constituent elements in their standard states

Standard states

$$
\mathrm{C}(\mathrm{~s})+2 \mathrm{H}_{2}(g) \longrightarrow \mathrm{CH}_{4}(g), \quad \Delta H_{\mathrm{f}}^{\circ}=-74.8 \mathrm{~kJ}
$$

1 mol of a substance

Standard Heats of Formation

TABLE 9.2 Standard Heats of Formation for Some Common Substances at $25^{\circ} \mathrm{C}$

Substance	Formula	$\begin{gathered} \Delta H_{\mathrm{f}}^{\circ} \\ (\mathrm{kJ} / \mathrm{mol}) \end{gathered}$	Substance	Formula	$\underset{(\mathrm{kJ} / \mathrm{mol})}{\Delta H_{\mathrm{f}}^{\circ}}$
Acetylene	$\mathrm{C}_{2} \mathrm{H}_{2}(\mathrm{~g})$	227.4	Hydrogen chloride	$\mathrm{HCl}(\mathrm{g})$	-92.3
Ammonia	$\mathrm{NH}_{3}(\mathrm{~g})$	-46.1	Iron(III) oxide	$\mathrm{Fe}_{2} \mathrm{O}_{3}(s)$	-824.2
Carbon dioxide	$\mathrm{CO}_{2}(\mathrm{~g})$	-393.5	Magnesium carbonate	$\mathrm{MgCO}_{3}(s)$	-1095.8
Carbon monoxide	$\mathrm{CO}(\mathrm{g})$	-110.5	Methane	$\mathrm{CH}_{4}(\mathrm{~g})$	-74.8
Ethanol	$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(l)$	-277.7	Nitric oxide	$\mathrm{NO}(\mathrm{g})$	91.3
Ethylene	$\mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{~g})$	52.3	Water (g)	$\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$	-241.8
Glucose	$\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}(s)$	1273.3	Water (l)	$\mathrm{H}_{2} \mathrm{O}(l)$	-285.8

Standard Heats of Formation

$$
\Delta H^{\circ}=\Delta H_{\mathrm{f}}^{\circ} \text { (Products) }-\Delta H_{\mathrm{f}}^{\circ} \text { (Reactants) }
$$

$$
a \mathrm{~A}+\mathrm{bB} \longrightarrow c \mathrm{C}+d \mathrm{D}
$$

Standard Heats of Formation

Using standard heats of formation, calculate the standard enthalpy of reaction for the photosynthesis of glucose $\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\right)$ and O_{2} from CO_{2} and liquid $\mathrm{H}_{2} \mathrm{O}$.

$$
6 \mathrm{CO}_{2}(g)+6 \mathrm{H}_{2} \mathrm{O}(\Lambda) \longrightarrow \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}(s)+6 \mathrm{O}_{2}(g)
$$

$$
\Delta H^{\circ}=?
$$

Standard Heats of Formation

$$
6 \mathrm{CO}_{2}(g)+6 \mathrm{H}_{2} \mathrm{O}(\Lambda) \longrightarrow \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}(s)+6 \mathrm{O}_{2}(g)
$$

$\Delta H^{\circ}=$?
$\Delta H^{\circ}=\left[\Delta H_{\mathrm{f}}\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}(s)\right)\right]-$
$\left[6 \Delta H_{f}^{\circ}\left(\mathrm{CO}_{2}(g)\right)+6 \Delta H_{f}^{\circ}\left(\mathrm{H}_{2} \mathrm{O}(\Lambda)\right)\right]$
$\Delta H^{\circ}=[(1 \mathrm{~mol})(-1260 \mathrm{~kJ} / \mathrm{mol})]-$
$[(6 \mathrm{~mol})(-393.5 \mathrm{~kJ} / \mathrm{mol})+(6 \mathrm{~mol})(-285.8 \mathrm{~kJ} / \mathrm{mol})]$
$\Delta H^{\circ}=2816 \mathrm{~kJ}$

Bond Dissociation Energies

Bond dissociation energies are standard enthalpy changes for the corresponding bond-breaking reactions.

TABLE 7.2 Average Bond Dissociation Energies, D(kJ/mol)

$\mathrm{H}-\mathrm{H}$	436^{a}	$\mathrm{C}-\mathrm{H}$	410	$\mathrm{~N}-\mathrm{H}$	390	$\mathrm{O}-\mathrm{F}$	180	$\mathrm{I}-\mathrm{I}$	151^{a}
$\mathrm{H}-\mathrm{C}$	410	$\mathrm{C}-\mathrm{C}$	350	$\mathrm{~N}-\mathrm{C}$	300	$\mathrm{O}-\mathrm{Cl}$	200	$\mathrm{~S}-\mathrm{F}$	310
$\mathrm{H}-\mathrm{F}$	570^{a}	$\mathrm{C}-\mathrm{F}$	450	$\mathrm{~N}-\mathrm{F}$	270	$\mathrm{O}-\mathrm{Br}$	210	$\mathrm{~S}-\mathrm{Cl}$	250
$\mathrm{H}-\mathrm{Cl}$	432^{a}	$\mathrm{C}-\mathrm{Cl}$	330	$\mathrm{~N}-\mathrm{Cl}$	200	$\mathrm{O}-\mathrm{I}$	220	$\mathrm{~S}-\mathrm{Br}$	210
$\mathrm{H}-\mathrm{Br}$	366^{a}	$\mathrm{C}-\mathrm{Br}$	270	$\mathrm{~N}-\mathrm{Br}$	240	$\mathrm{O}-\mathrm{N}$	200	$\mathrm{~S}-\mathrm{S}$	225
$\mathrm{H}-\mathrm{I}$	298^{a}	$\mathrm{C}-\mathrm{I}$	240	$\mathrm{~N}-\mathrm{N}$	240	$\mathrm{O}-\mathrm{O}$	180		
$\mathrm{H}-\mathrm{N}$	390	$\mathrm{C}-\mathrm{N}$	300	$\mathrm{~N}-\mathrm{O}$	200	$\mathrm{~F}-\mathrm{F}$	159^{a}		
$\mathrm{H}-\mathrm{O}$	460	$\mathrm{C}-\mathrm{O}$	350	$\mathrm{O}-\mathrm{H}$	460	$\mathrm{Cl}-\mathrm{Cl}$	243^{a}		
$\mathrm{H}-\mathrm{S}$	340	$\mathrm{C}-\mathrm{S}$	260	$\mathrm{O}-\mathrm{C}$	350	$\mathrm{Br}-\mathrm{Br}$	193^{a}		
Multiple covalent bonds									
$\mathrm{C}=\mathrm{C}$	728	$\mathrm{C} \equiv \mathrm{C}$	965	$\mathrm{C}=\mathrm{O}$	732	$\mathrm{O}=\mathrm{O}$	498^{a}	$\mathrm{N} \equiv \mathrm{N}$	945^{a}

${ }^{\mathrm{a}}$ Exact value.
${ }^{\mathrm{b}}$ We'll discuss multiple covalent bonds in Section 7.5.
© 2016 Pearson Education, Inc.

Bond Dissociation Energies

$$
\mathrm{H}_{2}(g)+\mathrm{Cl}_{2}(g) \longrightarrow 2 \mathrm{HCl}(g)
$$

$\Delta H^{\circ}=D($ Reactant bonds) $-D$ (Product bonds)

$$
\Delta H^{\circ}=\left(D_{\mathrm{H}-\mathrm{H}}+D_{\mathrm{Cl}-\mathrm{Cl}}\right)-\left(2 D_{\mathrm{H}-\mathrm{Cl}}\right)
$$

$\Delta H^{\circ}=[(1 \mathrm{~mol})(436 \mathrm{~kJ} / \mathrm{mol})+(1 \mathrm{~mol})(243 \mathrm{~kJ} / \mathrm{mol})]-$
(2 mol)(432 kJ/mol)
$\Delta H^{\circ}=-185 \mathrm{~kJ}$

Fossil Fuels, Fuel Efficiency, and Heats of Combustion

$$
\mathrm{CH}_{4}(g)+2 \mathrm{O}_{2}(g) \longrightarrow \mathrm{CO}_{2}(g)+2 \mathrm{H}_{2} \mathrm{O}(\Lambda)
$$

$$
\Delta H^{\circ}=\left[\Delta H^{\circ}\left(\mathrm{CO}_{2}(g)\right)+2 \Delta H_{\mathrm{f}}^{\circ}\left(\mathrm{H}_{2} \mathrm{O}(\mathrm{I})\right]-\left[\Delta H_{\mathrm{f}}^{\circ}\left(\mathrm{CH}_{4}(\mathrm{~g})\right)\right]\right.
$$

$\Delta H^{\circ}=[(1 \mathrm{~mol})(-393.5 \mathrm{~kJ} / \mathrm{mol})+(2 \mathrm{~mol})(-285.8 \mathrm{~kJ} / \mathrm{mol})]-$

$$
[(1 \mathrm{~mol})(-74.8 \mathrm{~kJ} / \mathrm{mol})]
$$

$$
\Delta H^{\circ}=-890.3 \mathrm{~kJ}
$$

Fossil Fuels, Fuel Efficiency, and Heats of Combustion

$$
\mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I}
$$

TABLE 9.3 Thermochemical Properties of Some Fuels

	Combustion Enthalpy		
Fuel	$\mathbf{k J} / \mathbf{m o l}$	$\mathbf{k J} / \mathbf{g}$	$\mathbf{k J} / \mathbf{m L}$
Hydrogen, $\mathrm{H}_{2}(l)$	-285.8	-141.8	-9.9^{a}
Ethanol, $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(l)$	-1366.8	-29.7	-23.4
Graphite, $\mathrm{C}(s)$	-393.5	-32.8	-73.8
Methane, $\mathrm{CH}_{4}(g)$	-890.3	-55.5	-30.8^{a}
Methanol, $\mathrm{CH}_{3} \mathrm{OH}(l)$	-725.9	-22.7	-17.9
Octane, $\mathrm{C}_{8} \mathrm{H}_{18}(l)$	-5470	-47.9	-33.6
Toluene, $\mathrm{C}_{7} \mathrm{H}_{8}(l)$	-3910	-42.3	-36.7

${ }^{\text {a }}$ Calculated for the compressed liquid at $0{ }^{\circ} \mathrm{C}$

An Introduction to Entropy

Spontaneous Process: A process that, once started, proceeds on its own without a continuous external influence

An Introduction to Entropy

Entropy (S): The amount of molecular randomness in a system

Less randomness \qquad More randomness,

An Introduction to Entropy

Spontaneous processes are

- favored by a decrease in H (negative ΔH).
- favored by an increase in S (positive ΔS).

Nonspontaneous processes are

- favored by an increase in H (positive ΔH).
- favored by a decrease in S (negative ΔS).

An Introduction to Free Energy

Gibbs Free-Energy Change (Δ G)

An Introduction to Free Energy

Gibbs Free-Energy Change ($\Delta \boldsymbol{G}$)

$$
\Delta G=\Delta H-\mathrm{T} \Delta S
$$

$\boldsymbol{\Delta} \boldsymbol{G}<\mathbf{0}$ Process is spontaneous.
$\boldsymbol{\Delta} \boldsymbol{G}=\mathbf{0} \quad$ Process is at equilibrium (neither spontaneous nor nonspontaneous).
$\boldsymbol{\Delta} \boldsymbol{G} \boldsymbol{>} \mathbf{0}$ Process is nonspontaneous.

An Introduction to Free Energy

Liquid water

Above $0^{\circ} \mathrm{C}$, the entropy term dominates the enthalpy term, so melting is spontaneous.

[^0]: ${ }^{a} \mathrm{At}-11^{\circ} \mathrm{C}$

