

Lecture Presentation

Chapter 10

Gases: Their Properties and Behavior

John E. McMurry Robert C. Fay

Gases and Gas Pressure

Gas mixtures are homogeneous and compressible.

[^0]

[^1]
Gases and Gas Pressure

Gases and Gas Pressure

Barometer

Mercury-filled dish

Gases and Gas Pressure

Barometer

Units

Pa torr atm bar

Mercury-filled dish

Gases and Gas Pressure

Conversions

$1 \mathrm{~atm}=760 \mathrm{~mm} \mathrm{Hg}$
(exact)
1 torr $=1 \mathrm{~mm} \mathrm{Hg}$
(exact)
$1 \mathrm{bar}=1 \times 10^{5} \mathrm{~Pa}$
(exact)
$1 \mathrm{~atm}=101325 \mathrm{~Pa}$

Gases and Gas Pressure

(a) The mercury level is higher in the arm open to the bulb because the pressure in the bulb is lower than atmospheric.

(b) The mercury level is higher in the arm open to the atmosphere because the pressure in the bulb is higher than atmospheric.

The physical properties of a gas can be defined by four variables:
P pressure
T temperature
V volume
$n \quad$ number of moles

The Gas Laws

Boyle's Law
 $V \propto \frac{1}{P} \quad($ constant n and $T)$

If the pressure is halved,
the volume is doubled.

The Gas Laws

Boyle's Law
 $$
V \propto \frac{1}{P} \quad(\text { constant } n \text { and } T)
$$

A plot of V versus P for a gas sample is a hyperbola.
(b)

A plot of V versus $1 / P$ is a straight line. Such a graph is characteristic of equations having the form
$y=m x+b$.

Boyle's Law
 $V \propto \frac{1}{P} \quad($ constant n and $T)$

$$
P V=k
$$

$$
P_{\text {initial }} V_{\text {initial }}=P_{\text {final }} V_{\text {final }}
$$

The Gas Laws

Charles's Law

$V \propto T \quad$ (constant n and P)

At constant n and P, the volume of an ideal gas changes proportionately as its absolute temperature changes. If the absolute temperature doubles, the volume doubles.

Charles's Law

$V \propto T \quad$ (constant n and $P)$

(a) Celsius scale plot

(b) Kelvin scale plot

A plot of V versus T for a gas sample is a straight line that can be extrapolated to absolute zero, $0 \mathrm{~K}=-273.15^{\circ} \mathrm{C}$.

The Gas Laws

Charles's Law

$V \propto T \quad$ (constant n and P)

$$
\begin{gathered}
\frac{V}{T}=k \\
\frac{V_{\text {initial }}}{T_{\text {initial }}}=\frac{V_{\text {final }}}{T_{\text {final }}}
\end{gathered}
$$

The Gas Laws

Avogadro's Law

$V \propto n \quad$ (constant T and P)

At constant T and P, the volume of an ideal gas changes proportionately with its molar amount. If the molar amount doubles, the volume doubles.

The Gas Laws

Avogadro's Law

$V \propto n \quad$ (constant T and P)

$$
\begin{gathered}
\frac{V}{n}=k \\
\frac{V_{\text {initial }}}{n_{\text {initial }}}=\frac{V_{\text {final }}}{n_{\text {final }}}
\end{gathered}
$$

The Ideal Gas Law

Summary

Boyle's Law: $\quad P_{\text {initial }} V_{\text {initial }}=P_{\text {final }} V_{\text {final }}$

Charles' Law:

Avogadro's Law:

$$
\frac{V_{\text {initial }}}{T_{\text {initial }}}=\frac{V_{\text {final }}}{T_{\text {final }}}
$$

$$
\frac{V_{\text {initial }}}{n_{\text {initial }}}=\frac{V_{\text {final }}}{n_{\text {final }}}
$$

The Ideal Gas Law

TABLE 9.4 Molar Volumes of Some Real Gases at $0{ }^{\circ} \mathrm{C}$ and 1 atm

Ideal Gas Law:

$$
P V=n R T
$$

R is the gas constant and is the same for all gases.

$$
R=0.08206 \frac{\mathrm{~L} \mathrm{~atm}}{\mathrm{~K} \mathrm{~mol}}
$$

Standard Temperature and Pressure (STP) for $\left\{\begin{array}{l} \\ \hline\end{array}{ }^{\circ} \mathrm{C}(273.15 \mathrm{~K})\right.$
 Gases $P=1 \mathrm{~atm}$

The Ideal Gas Law

TABLE 9.4 Molar Volumes of Some Real Gases at $0{ }^{\circ} \mathrm{C}$ and 1 atm

What is the volume of 1 mol of gas at STP?

$$
V=\frac{n R T}{P}=\frac{(1 \mathrm{~mol})\left(0.08206 \frac{\mathrm{~L} \mathrm{~atm}}{\mathrm{~K} \mathrm{~mol}}\right)(273.15 \mathrm{~K})}{(1 \mathrm{~atm})}=22.41 \mathrm{~L}
$$

Stoichiometric Relationships with Gases

The reaction used in the deployment of automobile airbags is the high-temperature decomposition of sodium azide, NaN_{3}, to produce N_{2} gas. How many liters of N_{2} at 1.15 atm and $30.0^{\circ} \mathrm{C}$ are produced by decomposition of $45.0 \mathrm{~g} \mathrm{NaN}_{3}$?

$2 \mathrm{NaN}_{3}(\mathrm{~s}) \longrightarrow 2 \mathrm{Na}(\mathrm{s})+3 \mathrm{~N}_{2}(\mathrm{~g})$

Stoichiometric Relationships with Gases

$$
2 \mathrm{NaN}_{3}(\mathrm{~s}) \longrightarrow 2 \mathrm{Na}(\mathrm{~s})+3 \mathrm{~N}_{2}(\mathrm{~g})
$$

Moles of \mathbf{N}_{2} produced:
$45.0 \mathrm{~g} \mathrm{NaN}_{3} \times \frac{1 \mathrm{~mol} \mathrm{NaN}_{3}}{65.0 \mathrm{~g} \mathrm{NaN}_{3}} \times \frac{3 \mathrm{~mol} \mathrm{~N}_{2}}{2 \mathrm{~mol} \mathrm{NaN}_{3}}=1.04 \mathrm{~mol} \mathrm{~N}_{2}$
Volume of \mathbf{N}_{2} produced:

$$
V=\frac{n R T}{P}=\frac{(1.04 \mathrm{~mol})\left(0.08206 \frac{\mathrm{~L} \mathrm{~atm}}{\mathrm{~K} \mathrm{~mol}}\right)(303.2 \mathrm{~K})}{(1.15 \mathrm{~atm})}=22.5 \mathrm{~L}
$$

Mixtures of Gases: Partial Pressure and

Dalton's Law

Dalton's Law of Partial Pressures: The total pressure exerted by a mixture of gases in a container at constant V and T is equal to the sum of the pressures of each individual gas in the container.

$$
P_{\text {total }}=P_{1}+P_{2}+\ldots+P_{N}
$$

Mole fraction $(\boldsymbol{X})=\frac{\text { Moles of component }}{\text { Total moles in mixture }}$

$$
X_{\mathrm{i}}=\frac{n_{\mathrm{i}}}{n_{\text {total }}} \quad \text { or } \quad X_{\mathrm{i}}=\frac{P_{\mathrm{i}}}{P_{\text {total }}}
$$

The Kinetic-Molecular Theory of Gases

1. A gas consists of tiny particles, either atoms or molecules, moving about at random.
2. The volume of the particles themselves is negligible compared with the total volume of the gas. Most of the volume of a gas is empty space.
3. The gas particles act independently of one another; there are no attractive or repulsive forces between particles.

The Kinetic-Molecular Theory of Gases
4. Collisions of the gas particles, either with other particles or with the walls of a container, are elastic (constant temperature).
5. The average kinetic energy of the gas particles is proportional to the Kelvin temperature of the sample.

Decreasing the volume of the gas at constant n and T increases the frequency of collisions with the container walls and thus increases the pressure (Boyle's law).

Increasing the temperature (kinetic energy) at constant n and P increases the volume of the gas (Charles's law).
(c) $\begin{aligned} & \text { Increase } n \\ & \text { (Avogadro's law) }\end{aligned}$

Increasing the amount of gas at constant T and P increases the volume of the gas (Avogadro's law).

Changing the identity of some gas molecules at constant T and V has no effect on the pressure (Dalton's law).

The Kinetic-Molecular Theory of Gases

TABLE 9.5 Average Speeds (m/s) of Some Gas Molecules at $25^{\circ} \mathrm{C}$

The Kinetic-Molecular Theory of Gases

Diffusion and Effusion of Gases: Graham's Law

Diffusion is the mixing of gas molecules by random motion under conditions where molecular collisions occur.

Effusion is the escape of a gas through a pinhole into a vacuum without molecular collisions.

Diffusion and Effusion of Gases: Graham's Law

Graham's Law

Rate $\propto \frac{1}{\sqrt{m}}$

Effusion is the escape of a gas through a pinhole into a vacuum without molecular collisions.

The Behavior of Real Gases

The volume of a real gas is larger than predicted by the ideal gas law.

At lower pressure, the volume of the gas particles is negligible compared to the total volume.

At higher pressure, the volume of the gas particles is more significant compared to the total volume. As a result, the volume of a real gas at high pressure is somewhat larger than the ideal value.

The Behavior of Real Gases

Attractive forces between particles become more important at higher pressures.

The Behavior of Real Gases

Van der Waals Equation

Correction for intermolecular attractions

$$
\left(P+\frac{a n^{2}}{V^{2}}\right)(V-n b)=n R T
$$

The Earth's Atmosphere and Pollution

Four regions of the atmosphere are defined based on the temperature variations.

Atmospheric pressure decreases as altitude increases.

Average temperature varies
irregularly with altitude.

The Earth's Atmosphere and Pollution

- The greenhouse effect is caused by the absorption of heat radiation in the Earth's atmosphere.
- CO_{2} and CH_{4}, gases with bonds that can bend, forming temporary dipoles, are greenhouse gases.
- O_{2} and N_{2}, gases that can't form a dipole, do not contribute to the greenhouse effect.

Climate Change

- The term denotes warming on a global scale, but greater extremes of hot and cold in seasonal storms.

Climate Change

- Carbon dioxide is emitted through numerous industrial, chemical processes.
- The amount of CO_{2} emitted is referred to as a carbon footprint.

[^0]: A gas is a large collection of particles moving at random through a volume that is primarily empty space.

[^1]: Collisions of randomly moving particles with the walls of the container exert a force per unit area that we perceive as gas pressure.

