

Lecture Presentation

Chapter 13

Chemical Kinetics

John E. McMurry Robert C. Fay

Reaction Rates

Chemical Kinetics: The area of chemistry concerned with reaction rates and the sequence of steps by which reactions occur

Reaction Rate: Either the increase in the concentration of a product per unit time or the decrease in the concentration of a reactant per unit time

Reaction Rates

TABLE 13.1 Concentrations as a Function of Time at $55^{\circ} \mathrm{C}$ for the Reaction $2 \mathrm{~N}_{2} \mathrm{O}_{5}(\mathrm{~g}) \longrightarrow 4 \mathrm{NO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})$

Time (s)	$\mathbf{N}_{2} \mathbf{O}_{5}$	Concentration (M) $\mathbf{N O}_{2}$	\mathbf{O}_{2}
0	0.0200	0	0
100	0.0169	0.0063	0.0016
200	0.0142	0.0115	0.0029
300	0.0120	0.0160	0.0040
400	0.0101	0.0197	0.0049
500	0.0086	0.0229	0.0057
600	0.0072	0.0256	0.0064
700	0.0061	0.0278	0.0070

Note that the concentrations of NO_{2} and O_{2} increase as the concentration of $\mathrm{N}_{2} \mathrm{O}_{5}$ decreases.

Reaction Rates

$2 \mathrm{~N}_{2} \mathrm{O}_{5}(g) \longrightarrow 4 \mathrm{NO}_{2}(g)+\mathrm{O}_{2}(g)$

The concentrations of O_{2} and NO_{2} increase as the concentration of $\mathrm{N}_{2} \mathrm{O}_{5}$ decreases.

The rate of formation of O_{2} is one-fourth the rate of formation of NO_{2} and one-half the rate of decomposition of $\mathrm{N}_{2} \mathrm{O}_{5}$.

Reaction Rates

$2 \mathrm{~N}_{2} \mathrm{O}_{5}(g) \longrightarrow 4 \mathrm{NO}_{2}(g)+\mathrm{O}_{2}(g)$

Rate of decomposition of $\mathrm{N}_{2} \mathrm{O}_{5}$:

$$
\begin{aligned}
\frac{\Delta\left[\mathrm{N}_{2} \mathrm{O}_{5}\right]}{\Delta t} & =\frac{-(0.0101 \mathrm{M}-0.0120 \mathrm{M})}{(400 \mathrm{~s}-300 \mathrm{~s})} \\
& =1.9 \times 10^{-5} \frac{\mathrm{M}}{\mathrm{~s}}
\end{aligned}
$$

Reaction Rates

$$
2 \mathrm{~N}_{2} \mathrm{O}_{5}(g) \longrightarrow 4 \mathrm{NO}_{2}(g)+\mathrm{O}_{2}(g)
$$

General rate of reaction:

$$
\text { rate }=-\frac{1}{2} \frac{\Delta\left[\mathrm{~N}_{2} \mathrm{O}_{5}\right]}{\Delta t}=\frac{1}{4} \frac{\Delta\left[\mathrm{NO}_{2}\right]}{\Delta t}=\frac{\Delta\left[\mathrm{O}_{2}\right]}{\Delta t}
$$

$$
a \mathrm{~A}+b \mathrm{~B} \longrightarrow d \mathrm{D}+e \mathrm{E}
$$

$$
\text { rate }=-\frac{1}{a} \frac{\Delta[\mathrm{~A}]}{\Delta t}=-\frac{1}{b} \frac{\Delta[\mathrm{~B}]}{\Delta t}=\frac{1}{d} \frac{\Delta[\mathrm{D}]}{\Delta t}=\frac{1}{e} \frac{\Delta[\mathrm{E}]}{\Delta t}
$$

Reaction Rates

$2 \mathrm{~N}_{2} \mathrm{O}_{5}(g) \longrightarrow 4 \mathrm{NO}_{2}(g)+\mathrm{O}_{2}(g)$

The slope of the tangent at time t is defined as the instantaneous rate at that particular time. The initial rate is the slope of the tangent to the curve at $t=0$.

Rate Laws and Reaction Order

Rate Law: An equation that shows the dependence of the reaction rate on the concentration of each reactant
$a \mathrm{~A}+b \mathrm{~B} \longrightarrow$ products
rate $\alpha[\mathrm{A}]^{m}[\mathrm{~B}]^{n}$
rate $=k[\mathrm{~A}]^{m}[\mathrm{~B}]^{n}$
k is the rate constant.

Rate Laws and Reaction Order

The values of the exponents in the rate law must be determined by experiment; they cannot be deduced from the stoichiometry of the reaction.

TABLE 13.2 Balanced Chemical Equations and Experimentally Determined Rate Laws for Some Reactions

Reaction	Rate Law
$\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CBr}($ soln $)+\mathrm{H}_{2} \mathrm{O}($ soln $) \longrightarrow\left(\mathrm{CH}_{3}\right)_{3} \mathrm{COH}($ soln $)+\mathrm{H}^{+}($soln $)+\mathrm{Br}^{-}($soln $)$	Rate $=k\left[\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CBr}\right]$
$\mathrm{HCO}_{2} \mathrm{H}(a q)+\mathrm{Br}_{2}(a q) \longrightarrow 2 \mathrm{H}^{+}(a q)+2 \mathrm{Br}^{-}(a q)+\mathrm{CO}_{2}(g)$	Rate $=k\left[\mathrm{Br}_{2}\right]$
$\mathrm{BrO}_{3}^{-}(a q)+5 \mathrm{Br}^{-}(a q)+6 \mathrm{H}^{+}(a q) \longrightarrow 3 \mathrm{Br}_{2}(a q)+3 \mathrm{H}_{2} \mathrm{O}(l)$	Rate $=k\left[\mathrm{BrO}_{3}^{-}\right]\left[\mathrm{Br}^{-}\right]\left[\mathrm{H}^{+}\right]^{2}$
$\mathrm{H}_{2}(g)+\mathrm{I}_{2}(g) \longrightarrow 2 \mathrm{HI}(g)$	Rate $=k\left[\mathrm{H}_{2}\right]\left[\mathrm{I}_{2}\right]$

In general, the exponents in the rate law are not the same as the stoichiometric coefficients in the balanced chemical equation for the reaction.
*In the first reaction, "(soln)" denotes a nonaqueous solution.

Experimental Determination of a Rate Law

$$
\begin{gathered}
2 \mathrm{NO}(g)+\mathrm{O}_{2}(g) \longrightarrow 2 \mathrm{NO}_{2}(g) \\
\text { rate }=k[\mathrm{NO}]^{m}\left[\mathrm{O}_{2}\right]^{n}
\end{gathered}
$$

Compare the initial rates to the changes in initial concentrations.
TABLE 13.3 Initial Concentration and Rate Data for the Reaction $2 \mathrm{NO}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{NO}_{2}(\mathrm{~g})$

Experiment	Initial [NO]	Initial $\left[\mathbf{O}_{2}\right]$	Initial Reaction Rate $(\mathbf{M} / \mathbf{s})$
1	0.015	0.015	0.024
2	0.030	0.015	0.096
3	0.015	0.030	0.048
4	0.030	0.030	0.192

Experimental Determination of a Rate Law

$$
\begin{gathered}
2 \mathrm{NO}(g)+\mathrm{O}_{2}(g) \longrightarrow 2 \mathrm{NO}_{2}(g) \\
\text { rate }=\mathrm{k}[\mathrm{NO}]^{2}\left[\mathrm{O}_{2}\right]^{n}
\end{gathered}
$$

The concentration of NO doubles, the concentration of O_{2} remains constant, and the rate quadruples.

$$
2^{m}=4 \quad m=2
$$

TABLE 13.3 Initial Concentration and Rate Data for the Reaction $2 \mathrm{NO}(g)+\mathrm{O}_{2}(g) \longrightarrow 2 \mathrm{NO}_{2}(g)$

Experiment	Initial $[\mathbf{N O}]$	Initial $\left[\mathbf{O}_{2}\right]$	Initial Reaction Rate $(\mathbf{M} / \mathbf{s})$
1	0.015	0.015	
2	0.030	0.015	0.024
3	0.015	0.030	0.096
4	0.030	0.030	0.192

Experimental Determination of a Rate Law

$$
\begin{gathered}
2 \mathrm{NO}(g)+\mathrm{O}_{2}(g) \longrightarrow 2 \mathrm{NO}_{2}(g) \\
\text { rate }=k[\mathrm{NO}]^{2}\left[\mathrm{O}_{2}\right]
\end{gathered}
$$

The concentration of O_{2} doubles, the concentration of NO remains constant, and the rate doubles.

$$
2^{n}=2 \quad n=1
$$

TABLE 13.3 Initial Concentration and Rate Data for the Reaction $2 \mathrm{NO}(g)+\mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{NO}_{2}(\mathrm{~g})$

Experiment	Initial [NO]	Initial $\left[\mathbf{O}_{2}\right]$	Initial Reaction Rate $(\mathbf{M} / \mathbf{s})$
1	0.015	0.015	0.024
2	0.030	0.015	0.096
3	0.015	0.030	0.048
4	0.030	0.030	0.192

Experimental Determination of a Rate Law

$$
\begin{gathered}
2 \mathrm{NO}(g)+\mathrm{O}_{2}(g) \longrightarrow 2 \mathrm{NO}_{2}(g) \\
\text { rate }=k[\mathrm{NO}]^{2}\left[\mathrm{O}_{2}\right]
\end{gathered}
$$

Reaction Order With Respect to a Reactant

- NO: second-order
- O_{2} : first-order

Overall Reaction Order

- $2+1=3$ (third-order)

Experimental Determination of a Rate Law

$$
\begin{gathered}
2 \mathrm{NO}(g)+\mathrm{O}_{2}(g) \longrightarrow 2 \mathrm{NO}_{2}(g) \\
\text { rate }=k[\mathrm{NO}]^{2}\left[\mathrm{O}_{2}\right]
\end{gathered}
$$

Units of k for this third-order reaction:

$$
k=\frac{\text { rate }}{\left[\mathrm{NO}^{2}\left[\mathrm{O}_{2}\right]\right.}=\frac{\frac{\mathrm{M}}{\mathrm{~s}}}{\left(\mathrm{M}^{2}\right)(\mathrm{M})}=\frac{1}{\mathrm{M}^{2} \mathrm{~s}}
$$

Experimental Determination of a Rate Law

$2 \mathrm{NO}(g)+\mathrm{O}_{2}(g) \longrightarrow 2 \mathrm{NO}_{2}(g)$
 rate $=k[\mathrm{NO}]^{2}\left[\mathrm{O}_{2}\right]$

Rate Law	Overall Reaction Order	Units for \boldsymbol{k}
Rate $=k$	Zeroth order	$\mathrm{M} / \mathrm{s} \mathrm{or} \mathrm{M} \mathrm{s}^{-1}$
Rate $=k[\mathrm{~A}]$	First order	$1 / \mathrm{sor} \mathrm{s}^{-1}$
Rate $=k[\mathrm{~A}][\mathrm{B}]$	Second order	$1 /(\mathrm{M} \cdot \mathrm{s})$ or $\mathrm{M}^{-1} \mathrm{~s}^{-1}$
Rate $=k[\mathrm{~A}][\mathrm{B}]^{2}$	Third order	$1 /\left(\mathrm{M}^{2} \cdot \mathrm{~s}\right){\text { or } \mathrm{M}^{-2} \mathrm{~s}^{-1}}^{\text {R }}$

Zeroth-Order Reactions

A plot of [A] versus time gives a straight-line fit and the slope will be $-\boldsymbol{k}$.

Time

Zeroth-Order Reactions

For a zeroth-order reaction, the rate is independent of the concentration of the reactant.

$$
\begin{gathered}
\mathrm{A} \longrightarrow \text { product(s) } \\
\text { rate }=k[\mathrm{~A}]^{0}=\mathrm{k} \quad-\frac{\Delta[\mathrm{A}]}{\Delta t}=k
\end{gathered}
$$

Calculus can be used to derive an integrated rate law.

Zeroth-Order Reactions

$2 \mathrm{NH}_{3}(g) \longrightarrow \mathrm{N}_{2}(g)+3 \mathrm{H}_{2}(g)$

rate $=k\left[\mathrm{NH}_{3}\right]^{0}=k$

Most of the NH_{3} molecules are in the gas phase above the surface and are unable to react.

Because only the NH_{3} molecules on the surface react under these conditions, the reaction rate is independent of the total concentration of NH_{3}.

Integrated Rate Law for a First-Order Reaction

$$
\begin{gathered}
\mathrm{A} \longrightarrow \text { product(s) } \\
\text { rate }=k[\mathrm{~A}] \quad-\frac{\Delta[\mathrm{A}]}{\Delta t}=k[\mathrm{~A}]
\end{gathered}
$$

Calculus can be used to derive an integrated rate law.

$$
\begin{aligned}
& \qquad \ln \left(\frac{[\mathrm{A}]_{t}}{[\mathrm{~A}]_{0}}\right)=-k t\left\{\begin{array}{cc}
{[\mathrm{A}]_{t}} & \text { concentration of } \mathrm{A} \text { at time } t \\
{[\mathrm{~A}]_{0}} & \text { initial concentration of } \mathrm{A}
\end{array}\right. \\
& \text { Using: } \ln \left(\frac{\mathrm{x}}{\mathrm{y}}\right)=\ln (x)-\ln (y) \quad \begin{array}{c}
\ln [\mathrm{A}]_{t}=-\mathrm{k} t+\ln [\mathrm{A}]_{0} \\
\mathrm{y}=\mathrm{mx}+\mathrm{b}
\end{array}
\end{aligned}
$$

Integrated Rate Law for a First-Order Reaction

$$
\begin{aligned}
\ln [\mathrm{A}]_{t} & =-k \boldsymbol{t}+\ln [\mathrm{A}]_{0} \\
y & =m x+b
\end{aligned}
$$

A plot of $\operatorname{In}[A]$ versus time gives a straight-line fit and the slope will be $-k$.

Integrated Rate Law for a First-Order Reaction

$$
\ln [\mathrm{A}]_{t}=-k \boldsymbol{t}+\ln [\mathrm{A}]_{0}
$$

(a) Reactant concentration versus time

This is a plot of [A] versus time.

The best-fit is a curve and not a line.

Integrated Rate Law for a First-Order Reaction

$\ln [\mathrm{A}]_{t}=-k t+\ln [\mathrm{A}]_{0}$

(a) Reactant concentration versus time

Time \longrightarrow
(b) Natural logarithm of reactant concentration versus time

Time \longrightarrow

Integrated Rate Law for a First-Order Reaction

$$
\begin{gathered}
2 \mathrm{~N}_{2} \mathrm{O}_{5}(g) \longrightarrow 4 \mathrm{NO}_{2}(g)+\mathrm{O}_{2}(g) \\
\text { rate }=k\left[\mathrm{~N}_{2} \mathrm{O}_{5}\right]
\end{gathered}
$$

Time (s)	$\left[\mathbf{N}_{\mathbf{2}} \mathrm{O}_{5}\right]$	$\ln \left[\mathrm{N}_{\mathbf{2}} \mathrm{O}_{5}\right]$
0	0.0200	-3.912
100	0.0169	-4.080
200	0.0142	-4.255
300	0.0120	-4.423
400	0.0101	-4.595
500	0.0086	-4.756
600	0.0072	-4.934
700	0.0061	-5.099

Slope $=-k$

Integrated Rate Law for a First-Order Reaction

$$
\begin{gathered}
2 \mathrm{~N}_{2} \mathrm{O}_{5}(g) \longrightarrow 4 \mathrm{NO}_{2}(g)+\mathrm{O}_{2}(g) \\
\text { rate }=k\left[\mathrm{~N}_{2} \mathrm{O}_{5}\right]
\end{gathered}
$$

Calculate the slope:
$\frac{-5.02-(-4.17)}{650 s-150 s}=-0.0017 \frac{1}{s}$

$$
k=0.0017 \frac{1}{\mathrm{~s}}
$$

Slope $=-k$

Half-Life of a First-Order Reaction

Half-Life: The time required for the reactant concentration to drop to one-half of its initial value

$$
\begin{gathered}
\mathrm{A} \longrightarrow \operatorname{product}(\mathrm{~s}) \\
\operatorname{rate}=k[\mathrm{~A}] \\
\ln \left(\frac{[\mathrm{A}]_{t}}{[\mathrm{~A}]_{0}}\right)=-k t\left\{\begin{array}{l}
t=t_{1 / 2} \\
{[\mathrm{~A}]_{t_{1 / 2}}=\frac{[\mathrm{A}]_{0}}{2}}
\end{array}\right. \\
\ln \left(\frac{1}{2}\right)=-k t_{1 / 2} \text { or } t_{1 / 2}=\frac{0.693}{k}
\end{gathered}
$$

Half-Life of a First-Order Reaction

$$
t_{1 / 2}=\frac{0.693}{k}
$$

For a first-order reaction, the half-life is independent of the initial concentration.

Each successive half-life is an equal period of time.

Radioactive Decay Rates

$$
\begin{gathered}
{ }_{6}^{14} \mathrm{C} \longrightarrow{ }_{7}^{14} \mathrm{~N}+{ }_{-1}^{0} \mathrm{e} \\
t_{1 / 2}=5715 \mathrm{y} \\
\text { Decay rate }=-\frac{\Delta \mathrm{N}}{\Delta t}=k \mathrm{~N}
\end{gathered}
$$

Second-Order Reactions

$$
\begin{gathered}
\mathrm{A} \longrightarrow \text { product(s) } \\
\text { rate }=k[\mathrm{~A}]^{2} \quad-\frac{\Delta[\mathrm{A}]}{\Delta \mathrm{D} t}=k[\mathrm{~A}]^{2}
\end{gathered}
$$

Calculus can be used to derive an integrated rate law.

Second-Order Reactions

$2 \mathrm{NO}_{2}(g) \longrightarrow 2 \mathrm{NO}(g)+\mathrm{O}_{2}(g)$

Time (s)	$\left[\mathrm{NO}_{2}\right]$	$\ln \left[\mathrm{NO}_{2}\right]$	$\mathbf{1} /\left[\mathrm{NO}_{2}\right]$
0	8.00×10^{-3}	-4.828	125
50	6.58×10^{-3}	-5.024	152
100	5.59×10^{-3}	-5.187	179
150	4.85×10^{-3}	-5.329	206
200	4.29×10^{-3}	-5.451	233
300	3.48×10^{-3}	-5.661	287
400	2.93×10^{-3}	-5.833	341
500	2.53×10^{-3}	-5.980	395

Second-Order Reactions

$$
2 \mathrm{NO}_{2}(g) \longrightarrow 2 \mathrm{NO}(g)+\mathrm{O}_{2}(g)
$$

Plotting $\operatorname{In}\left[\mathrm{NO}_{2}\right]$ versus time gives a curve and not a straight-line fit.

Therefore, this is not a firstorder reaction.

Second-Order Reactions

$$
2 \mathrm{NO}_{2}(g) \longrightarrow 2 \mathrm{NO}(g)+\mathrm{O}_{2}(g)
$$

Plotting $\frac{1}{\left[\mathrm{NO}_{2}\right]}$ versus
 $\left[\mathrm{NO}_{2}\right]$

time gives a straight-line fit.
Therefore, this is a secondorder reaction.

Slope $=k$

Second-Order Reactions

$$
2 \mathrm{NO}_{2}(g) \longrightarrow 2 \mathrm{NO}(g)+\mathrm{O}_{2}(g)
$$

Calculate the slope:
Slope $=k$
$\frac{(340-150) \frac{1}{M}}{400 \mathrm{~s}-50 \mathrm{~s}}=0.54 \frac{1}{\mathrm{Ms}}$

$$
k=0.54 \frac{1}{\mathrm{M} \mathrm{~s}}
$$

Second-Order Reactions

Half-life for a second-order reaction
$\mathrm{A} \longrightarrow$ product(s)
rate $=k[\mathrm{~A}]^{2}$

$$
\begin{aligned}
& \frac{1}{[\mathrm{~A}]_{t}}=k t+\frac{1}{[\mathrm{~A}]_{0}} \quad\left\{\begin{array}{l}
t=\boldsymbol{t}_{1 / 2} \\
{[\mathrm{~A}]_{t_{1 / 2}}=\frac{[\mathrm{A}]_{0}}{2}}
\end{array}\right. \\
& \frac{2}{[\mathrm{~A}]_{0}}=k t_{1 / 2}+\frac{1}{[\mathrm{~A}]_{0}} \quad t_{1 / 2}=\frac{1}{k[\mathrm{~A}]_{0}}
\end{aligned}
$$

Second-Order Reactions

$$
t_{1 / 2}=\frac{1}{k[\mathrm{~A}]_{0}}
$$

For a second-order reaction, the half-life is dependent on the initial concentration.

Each successive half-life is twice as long as the preceding one.

TABLE 13.4 Characteristics of Zeroth-, First-, and Second-Order Reactions of the

 Type A \rightarrow Products| | Zeroth-Order | First-Order | Second-Order |
| :---: | :---: | :---: | :---: |
| Rate law | $-\frac{\Delta[\mathrm{A}]}{\Delta t}=k$ | $-\frac{\Delta[\mathrm{A}]}{\Delta t}=k[\mathrm{~A}]$ | $-\frac{\Delta[\mathrm{A}]}{\Delta t}=k[\mathrm{~A}]^{2}$ |
| Integrated Rate Law | $[\mathrm{A}]_{t}=-k t+[\mathrm{A}]_{0}$ | $\ln [\mathrm{A}]_{t}=-k t+\ln [\mathrm{A}]_{0}$ | $\frac{1}{[\mathrm{~A}]_{t}}=k t+\frac{1}{[\mathrm{~A}]_{0}}$ |
| Linear graph | [A] versus t | $\ln [\mathrm{A}]$ versus t | $\frac{1}{[\mathrm{~A}]} \text { versus } t$ |
| | [A] | | |
| Graphical determination of k | $k=-($ Slope $)$ | $k=-($ Slope $)$ | $k=$ Slope |
| Half-life | $t_{1 / 2}=\frac{[\mathrm{A}]_{0}}{2 k}$
 (not constant) | $\begin{aligned} & t_{1 / 2}=\frac{0.693}{k} \\ & \text { (constant) } \end{aligned}$ | $t_{1 / 2}=\frac{1}{k[\mathrm{~A}]_{0}}$
 (not constant) |

Reaction Rates and Temperature: The Arrhenius Equation

Typically, as the temperature increases, the rate of reaction increases.

$$
\begin{gathered}
2 \mathrm{~N}_{2} \mathrm{O}_{5}(g) \longrightarrow 4 \mathrm{NO}_{2}(g)+\mathrm{O}_{2}(g) \\
\text { rate }=k\left[\mathrm{~N}_{2} \mathrm{O}_{5}\right]
\end{gathered}
$$

The rate constant is dependent on temperature.

Reaction Rates and Temperature: The Arrhenius Equation

Magnesium is inert
in cold water.

Magnesium reacts
in hot water.

$$
\mathrm{Mg}(s)+2 \mathrm{H}_{2} \mathrm{O}(l) \longrightarrow \mathrm{Mg}^{2+}(a q)+2 \mathrm{OH}^{-}(a q)+\mathrm{H}_{2}(g)
$$

The formation of bubbles of gas and the pink color of phenolphthalein, which indicates an alkaline solution, provide evidence of the reaction.

Reaction Rates and Temperature: The Arrhenius Equation

Transition State: The configuration of atoms at the maximum in the potential energy profile. This is also called the activated complex.

Reaction progress \longrightarrow

Reaction Rates and Temperature: The Arrhenius Equation

Collision Theory: As the average kinetic energy increases, the average molecular speed increases, and thus the collision rate increases.

Reaction Rates and Temperature: The Arrhenius Equation

$$
k=A e^{-E_{\mathrm{a}} / R T}
$$

k Rate constant

A Collision frequency factor
$E_{\mathrm{a}} \quad$ Activation energy
\boldsymbol{R} Gas constant
$\boldsymbol{T} \quad$ Temperature (K)

Using the Arrhenius Equation

$$
\begin{gathered}
\ln (k)=\ln (A)+\ln \left(\mathrm{e}^{-E_{a} / R T}\right) \\
\ln (k)=\ln (A)-\frac{E_{\mathrm{a}}}{R T} \xrightarrow[\begin{array}{c}
\text { rearrange } \\
\text { the equation }
\end{array}]{\ln (k)=\left(\frac{-E_{\mathrm{a}}}{R}\right)\left(\frac{1}{T}\right)+\ln (A)} \\
y=m x+b
\end{gathered}
$$

Reaction Mechanisms

Reaction Mechanism: A sequence of reaction steps that describes the pathway from reactants to products

Elementary Reaction (step): A single step in a reaction mechanism

Reaction Mechanisms

An elementary reaction describes an individual molecular event.

The overall reaction describes the reaction stoichiometry and is a summation of elementary reactions.

Reaction Mechanisms

Experimental evidence suggests that the reaction between NO_{2} and CO takes place by a two-step mechanism:
$\mathrm{NO}_{2}(g)+\mathrm{NO}_{2}(g) \longrightarrow \mathrm{NO}(g)+\mathrm{NO}_{3}(g)$ elementary reaction
$\mathrm{NO}_{3}(g)+\mathrm{CO}(g) \longrightarrow \mathrm{NO}_{2}(g)+\mathrm{CO}_{2}(g)$ elementary reaction
$\mathrm{NO}_{2}(g)+\mathrm{CO}(g) \longrightarrow \mathrm{NO}(g)+\mathrm{CO}_{2}(g)$ overall reaction

Reaction Mechanisms

$\mathrm{NO}_{2}(g)+\mathrm{NO}_{2}(g) \longrightarrow \mathrm{NO}(g)+\mathrm{NO}_{3}(g)$

$\mathrm{NO}_{3}(g)+\mathrm{CO}(g) \longrightarrow \mathrm{NO}_{2}(g)+\mathrm{CO}_{2}(g)$

Reaction Mechanisms

Experimental evidence suggests that the reaction between NO_{2} and CO takes place by a two-step mechanism:
$\mathrm{NO}_{2}(g)+\mathrm{NO}_{2}(g) \longrightarrow \mathrm{NO}(g)+\mathrm{NO}_{3}(g)$ elementary reaction
$\mathrm{NO}_{3}(g)+\mathrm{CO}(g) \longrightarrow \mathrm{NO}_{2}(g)+\mathrm{CO}_{2}(g)$ elementary reaction
$\mathrm{NO}_{2}(g)+\mathrm{CO}(g) \longrightarrow \mathrm{NO}(g)+\mathrm{CO}_{2}(g)$ overall reaction

A reactive intermediate is formed in one step and consumed in a subsequent step.

Reaction Mechanisms-Molecularity

Molecularity: A classification of an elementary reaction based on the number of molecules (or atoms) on the reactant side of the chemical equation

Reaction Mechanisms-Molecularity

Unimolecular Reaction

$$
\mathrm{O}_{3}{ }^{*}(g) \longrightarrow \mathrm{O}_{2}(g)+\mathrm{O}(g)
$$

Reaction Mechanisms-Molecularity

Bimolecular Reaction

$$
\mathrm{O}_{3}(g)+\mathrm{O}(g) \longrightarrow 2 \mathrm{O}_{2}(g)
$$

Reaction Mechanisms-Molecularity

Termolecular Reaction
$\mathrm{O}(g)+\mathrm{O}(g)+\mathrm{M}(g) \longrightarrow \mathrm{O}_{2}(g)+\mathrm{M}(g)$

Rate Laws for Elementary Reactions

The rate law for an elementary reaction follows directly from its molecularity because an elementary reaction is an individual molecular event.

Rate Laws for Elementary Reactions

Unimolecular Reaction

$$
\mathrm{O}_{3}{ }^{*}(g) \longrightarrow \mathrm{O}_{2}(g)+\mathrm{O}(g) \quad \text { rate }=k\left[\mathrm{O}_{3}\right]
$$

Bimolecular Reaction

$$
\mathrm{O}_{3}(g)+\mathrm{O}(g) \longrightarrow 2 \mathrm{O}_{2}(g) \quad \text { rate }=k\left[\mathrm{O}_{3}\right][\mathrm{O}]
$$

Termolecular Reaction

$$
\mathrm{O}(g)+\mathrm{O}(g)+\mathrm{M}(g) \longrightarrow \mathrm{O}_{2}(g)+\mathrm{M}(g) \quad \text { rate }=k[\mathrm{O}]^{2}[\mathrm{M}]
$$

Rate Laws for Elementary Reactions

TABLE 13.5 Rate Laws for Elementary Reactions

Elementary Reaction	Molecularity	Rate Law
$\mathrm{A} \rightarrow$ Products	Unimolecular	Rate $=k[\mathrm{~A}]$
$\mathrm{A}+\mathrm{A} \rightarrow$ Products	Bimolecular	Rate $=k[\mathrm{~A}]^{2}$
$\mathrm{~A}+\mathrm{B} \rightarrow$ Products	Bimolecular	Rate $=k[\mathrm{~A}][\mathrm{B}]$
$\mathrm{A}+\mathrm{A}+\mathrm{B} \rightarrow$ Products	Termolecular	Rate $=k[\mathrm{~A}]^{2}[\mathrm{~B}]$
$\mathrm{A}+\mathrm{B}+\mathrm{C} \rightarrow$ Products	Termolecular	Rate $=k[\mathrm{~A}][\mathrm{B}][\mathrm{C}]$

Rate Laws for Overall Reactions

Rate-Determining Step: The slow step in a reaction mechanism since it acts as a bottleneck and limits the rate at which reactants can be converted to products

Rate Laws for Overall Reactions

Multistep Reactions with an Initial Slow Step

$\mathrm{NO}_{2}(g)+\mathrm{NO}_{2}(g) \xrightarrow{k_{1}} \mathrm{NO}(g)+\mathrm{NO}_{3}(g)$ slow step
$\mathrm{NO}_{3}(g)+\mathrm{CO}(g) \xrightarrow{k_{2}} \mathrm{NO}_{2}(g)+\mathrm{CO}_{2}(g)$ fast step
$\mathrm{NO}_{2}(g)+\mathrm{CO}(g) \longrightarrow \mathrm{NO}(g)+\mathrm{CO}_{2}(g)$ overall reaction

Based on the slow step: rate $=\boldsymbol{k}_{\mathbf{1}}\left[\mathrm{NO}_{\mathbf{2}}\right]^{\mathbf{2}}$

Rate Laws for Overall Reactions

Multistep Reactions with an Initial Fast Step

$$
2 \mathrm{NO}(g) \stackrel{k_{1}}{\underset{K_{-1}}{ }} \mathrm{~N}_{2} \mathrm{O}_{2}(g)
$$

$\mathrm{N}_{2} \mathrm{O}_{2}(g)+\mathrm{H}_{2}(g) \xrightarrow{k_{2}} \mathrm{~N}_{2} \mathrm{O}(g)+\mathrm{H}_{2} \mathrm{O}(g)$ slow step
$\mathrm{N}_{2} \mathrm{O}(g)+\mathrm{H}_{2}(g) \xrightarrow{k_{3}} \mathrm{~N}_{2}(g)+\mathrm{H}_{2} \mathrm{O}(g)$ fast step
$2 \mathrm{NO}(g)+2 \mathrm{H}_{2}(g) \longrightarrow \mathrm{N}_{2}(g)+2 \mathrm{H}_{2} \mathrm{O}(g)$ overall reaction Based on the slow step: rate $=\boldsymbol{k}_{\mathbf{2}}\left[\mathbf{N}_{\mathbf{2}} \mathrm{O}_{2}\right]\left[\mathrm{H}_{\mathbf{2}}\right]$

Rate Laws for Overall Reactions

$$
\text { rate }=k_{2}\left[\mathrm{~N}_{2} \mathrm{O}_{2}\right]\left[\mathrm{H}_{2}\right]
$$

intermediate
First step: \quad Rate $_{\text {forward }}=k_{1}[\mathrm{NO}]^{2} \quad$ Rate reverse $=k_{-1}\left[\mathrm{~N}_{2} \mathrm{O}_{2}\right]$

$$
k_{1}[\mathrm{NO}]^{2}=k_{-1}\left[\mathrm{~N}_{2} \mathrm{O}_{2}\right]
$$

Rate Laws for Overall Reactions

Procedure for Studying Reaction Mechanisms

Using the Arrhenius Equation

$\ln (k)=\left(\frac{-E_{\mathrm{a}}}{R}\right)\left(\frac{1}{T}\right)+\ln (A)$

Plot $\ln (\boldsymbol{k})$ versus $\frac{\mathbf{1}}{\boldsymbol{T}}$

Catalysis

Catalyst: A substance that increases the rate of a reaction without itself being consumed in the reaction. A catalyst is used in one step and regenerated in a later step.

$$
\mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{aq})+\mathrm{I}^{1-(a q)} \longrightarrow \mathrm{H}_{2} \mathrm{O}(\Lambda)+\mathrm{IO}^{1-}(\mathrm{aq})
$$

rate-determining step

$$
\mathrm{H}_{2} \mathrm{O}_{2}(a q)+10^{1-}(a q) \longrightarrow \mathrm{H}_{2} \mathrm{O}(\lambda)+\mathrm{O}_{2}(g)+\mathrm{I}^{1-}(a q) \text { fast step }
$$

$$
2 \mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{aq}) \longrightarrow 2 \mathrm{H}_{2} \mathrm{O}(\Lambda)+\mathrm{O}_{2}(g) \quad \text { overall reaction }
$$

Catalysis

Since the catalyst is involved in the rate determining step, it often appears in the rate law.

$$
\text { rate }=k\left[\mathrm{H}_{2} \mathrm{O}_{2}\right]\left[\mathrm{I}^{1-}\right]
$$

$$
\mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{aq})+\mathrm{I}^{1-(a q)} \longrightarrow \mathrm{H}_{2} \mathrm{O}(\Lambda)+\mathrm{IO}^{1-}(a q) \begin{gathered}
\text { rate-determining } \\
\text { step }
\end{gathered}
$$

$$
\mathrm{H}_{2} \mathrm{O}_{2}(a q)+\mathrm{IO}^{1-}(a q) \longrightarrow \mathrm{H}_{2} \mathrm{O}(\Lambda)+\mathrm{O}_{2}(g)+\mathrm{I}^{1-}(a q) \text { fast step }
$$

$$
2 \mathrm{H}_{2} \mathrm{O}_{2}(a q) \longrightarrow 2 \mathrm{H}_{2} \mathrm{O}(\Lambda)+\mathrm{O}_{2}(g) \quad \text { overall reaction }
$$

Catalysis

The rate of decomposition of aqueous hydrogen peroxide can be monitored qualitatively by collecting the evolved oxygen gas in a balloon.

In the absence of a catalyst, little O_{2} is produced.

After addition of aqueous sodium iodide, by opening the stopcock to add Nal, the balloon rapidly inflates with O_{2}.

Catalysis

(a) Catalyzed pathway

Reaction progress \longrightarrow
(b) Uncatalyzed pathway

The activation energy E_{a} is lower for the catalyzed pathway. The shape of the barrier for the catalyzed pathway applies to the decomposition of $\mathrm{H}_{2} \mathrm{O}_{2}$.

Homogeneous and Heterogeneous Catalysts

Homogeneous Catalyst: A catalyst that exists in the same phase as the reactants

Heterogeneous Catalyst: A catalyst that exists in a different phase from that of the reactants

Homogeneous and Heterogeneous Catalysts

(a) H_{2} and $\mathrm{C}_{2} \mathrm{H}_{4}$ are adsorbed on the metal surface.

(c) One H atom forms a bond to a C atom of the adsorbed $\mathrm{C}_{2} \mathrm{H}_{4}$ to give a metal-bonded $\mathrm{C}_{2} \mathrm{H}_{5}$ group. A second H atom bonds to the $\mathrm{C}_{2} \mathrm{H}_{5}$ group.

(b) The $\mathrm{H}-\mathrm{H}$ bond breaks as H -metal bonds form, and the H atoms move about on the surface.

(d) The resulting $\mathrm{C}_{2} \mathrm{H}_{6}$ molecule is desorbed from the surface.

Homogeneous and Heterogeneous Catalysts

TABLE 13.6 Some Heterogeneous Catalysts Used in Commercially Important Reactions

Reaction	Catalyst	Commercial Process	Product: Commercial Uses
$2 \mathrm{SO}_{2}+\mathrm{O}_{2} \longrightarrow 2 \mathrm{SO}_{3}$	Pt or $\mathrm{V}_{2} \mathrm{O}_{5}$	Intermediate step in the contact process for synthesis of sulfuric acid	$\mathrm{H}_{2} \mathrm{SO}_{4}$: Manufacture of fertilizers, chemicals; oil refining
$4 \mathrm{NH}_{3}+5 \mathrm{O}_{2} \longrightarrow 4 \mathrm{NO}+6 \mathrm{H}_{2} \mathrm{O}$	Pt and Rh	First step in the Ostwald process for synthesis of nitric acid	HNO_{3} : Manufacture of explosives, fertilizers, plastics, dyes, lacquers
$\mathrm{N}_{2}+3 \mathrm{H}_{2} \longrightarrow 2 \mathrm{NH}_{3}$	$\mathrm{Fe}, \mathrm{K}_{2} \mathrm{O}$, and $\mathrm{Al}_{2} \mathrm{O}_{3}$	Haber process for synthesis of ammonia	NH_{3} : Manufacture of fertilizers, nitric acid
$\mathrm{H}_{2} \mathrm{O}+\mathrm{CH}_{4} \longrightarrow \mathrm{CO}+3 \mathrm{H}_{2}$	Ni	Steam-hydrocarbon re-forming process for synthesis of hydrogen	H_{2} : Manufacture of ammonia, methanol
$\mathrm{CO}+\mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{CO}_{2}+\mathrm{H}_{2}$	ZnO and CuO	Water-gas shift reaction to improve yield in the synthesis of H_{2}	H_{2} : Manufacture of ammonia, methanol
$\mathrm{CO}+2 \mathrm{H}_{2} \longrightarrow \mathrm{CH}_{3} \mathrm{OH}$	$\mathrm{Cu}, \mathrm{ZnO}$, and $\mathrm{Al}_{2} \mathrm{O}_{3}$	Industrial synthesis of methanol	$\mathrm{CH}_{3} \mathrm{OH}$: Manufacture of plastics, adhesives, gasoline additives; industrial solvent
	Ni, Pd, or Pt	Catalytic hydrogenation of compounds with $\mathrm{C}=\mathrm{C}$ bonds as in conversion of unsaturated vegetable oils to solid fats	Food products: margarine, shortening

