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Reaction Rates

Chemical Kinetics: The area of chemistry 

concerned with reaction rates and the sequence 

of steps by which reactions occur

Reaction Rate: Either the increase in the 

concentration of a product per unit time or the 

decrease in the concentration of a reactant per 

unit time
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Reaction Rates
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Reaction Rates

2 N2O5(g) 4 NO2(g) + O2(g)
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Reaction Rates

2 N2O5(g) 4 NO2(g) + O2(g)

s

M
= 1.9 × 10–5

–(0.0101 M – 0.0120 M) 

(400 s – 300 s)
=

Dt

D[N2O5]

Rate of decomposition of N2O5:
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Reaction Rates

a A + b B d D + e E

rate = =

=
1
4–

D[O2]

Dt
rate =

1
2

D[N2O5]

Dt
=

D[NO2]

Dt

– 1
b

D[B]

Dt
=– 1

e

D[E]

Dt
=

1
a

D[A]

Dt

1
d

D[D]

Dt

General rate of reaction:

2 N2O5(g) 4 NO2(g) + O2(g)
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Reaction Rates

2 N2O5(g) 4 NO2(g) + O2(g)
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Rate Laws and Reaction Order

Rate Law: An equation that shows the dependence of the 

reaction rate on the concentration of each reactant

aA + bB products

rate  [A]m[B]n

rate = k[A]m[B]n

k is the rate constant.
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Rate Laws and Reaction Order

The values of the exponents in the rate law must be 

determined by experiment; they cannot be deduced from 

the stoichiometry of the reaction.
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Experimental Determination of a Rate Law

2 NO(g) + O2(g) 2 NO2(g)

Compare the initial rates to the changes in initial concentrations.

rate = k[NO]m [O2]
n
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Experimental Determination of a Rate Law

m = 2

The concentration of NO doubles, the concentration of O2

remains constant, and the rate quadruples.

2m = 4

2 NO(g) + O2(g) 2 NO2(g)

rate = k[NO]2 [O2]
n
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Experimental Determination of a Rate Law

n = 1

The concentration of O2 doubles, the concentration of NO 

remains constant, and the rate doubles.

2n = 2

2 NO(g) + O2(g) 2 NO2(g)

rate = k[NO]2 [O2]
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Experimental Determination of a Rate Law

Reaction Order With Respect to a Reactant

• NO: second-order

• O2: first-order

Overall Reaction Order

• 2 + 1 = 3 (third-order)

2 NO(g) + O2(g) 2 NO2(g)

rate = k[NO]2 [O2]
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Experimental Determination of a Rate Law

=k =

M
s

(M2) (M)

1

M2 s
=

rate

[NO]2 [O2]

Units of k for this third-order reaction:

2 NO(g) + O2(g) 2 NO2(g)

rate = k[NO]2 [O2]
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Experimental Determination of a Rate Law

2 NO(g) + O2(g) 2 NO2(g)

rate = k[NO]2 [O2]
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Zeroth-Order Reactions

A plot of [A] versus time

gives a straight-line fit and 

the slope will be –k.



© 2016 Pearson Education, Inc.Instructor’s Resource Materials (Download only) for Chemistry, 7e

John E. McMurry, Robert C. Fay, Jill Robinson

Zeroth-Order Reactions

A product(s)

rate = k[A]0 = k
D[A]

Dt
– = k

For a zeroth-order reaction, the rate is independent of the 

concentration of the reactant.

Calculus can be used to derive an integrated rate law.

[A]t concentration of A at time t

[A]0 initial concentration of A
y = mx + b

[A]t = –kt + [A]0
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Zeroth-Order Reactions

rate = k[NH3]
0 = k

2 NH3(g) N2(g) + 3 H2(g)
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Integrated Rate Law for a First-Order 

Reaction

A product(s)

rate = k[A]

Calculus can be used to derive an integrated rate law.

D[A]

Dt
– = k[A]

x

y
ln = ln(x) – ln(y)Using:

[A]t
[A]0

ln = –kt

ln[A]t = –kt + ln[A]0

y    = mx + b

[A]t concentration of A at time t

[A]0 initial concentration of A
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Integrated Rate Law for a First-Order 

Reaction

y = mx + b

A plot of ln[A] versus time gives a straight-line fit and the 

slope will be –k.

ln[A]t = –kt + ln[A]0
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Integrated Rate Law for a First-Order 

Reaction

This is a plot of [A]

versus time.

The best-fit is a curve

and not a line.

ln[A]t = –kt + ln[A]0



© 2016 Pearson Education, Inc.Instructor’s Resource Materials (Download only) for Chemistry, 7e

John E. McMurry, Robert C. Fay, Jill Robinson

Integrated Rate Law for a First-Order 

Reaction

ln[A]t = –kt + ln[A]0
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Integrated Rate Law for a First-Order 

Reaction

2 N2O5(g) 4 NO2(g) + O2(g)

rate = k[N2O5]

Slope = –k
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Integrated Rate Law for a First-Order 

Reaction

Slope = –k

k = 0.0017

650 s – 150 s

–5.02 – (–4.17)
= –0.0017

s
1

Calculate the slope:

s
1

2 N2O5(g) 4 NO2(g) + O2(g)

rate = k[N2O5]
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Half-Life of a First-Order Reaction

Half-Life: The time required for the reactant concentration to 

drop to one-half of its initial value

A product(s)

rate = k[A]

[A]t
[A]0

ln = –kt
t = t1/2

=
t1/2

[A]
2

[A]0

= –kt1/2

1

2
ln t1/2 =

k

0.693
or
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Half-Life of a First-Order Reaction

t1/2 =
k

0.693

For a first-order reaction, 

the half-life is independent 

of the initial concentration.

Each successive half-life 

is an equal period of time.
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Radioactive Decay Rates

14

7
N +

0

–1
e

14

6
C

t1/2 = 5715 y

= kN
Dt

DN
–Decay rate =
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Second-Order Reactions

A product(s)

rate = k[A]2

Calculus can be used to derive an integrated rate law.

D[A]

DDt
– = k[A]2

[A]t concentration of A at time t

[A]0 initial concentration of A

= kt +
[A]0

1

[A]t

1

y = mx + b
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Second-Order Reactions

2 NO2(g) 2 NO(g) + O2(g)
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Second-Order Reactions

Plotting ln[NO2] versus time

gives a curve and not a 

straight-line fit.

Therefore, this is not a first-

order reaction.

2 NO2(g) 2 NO(g) + O2(g)
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Second-Order Reactions

Slope = k

2 NO2(g) 2 NO(g) + O2(g)

Plotting               versus 

time gives a straight-line fit.

Therefore, this is a second-

order reaction.

[NO2]

1
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Second-Order Reactions

k = 0.54

400 s – 50 s

(340 – 150)

= 0.54

M s

1

Calculate the slope:

M
1

M s

1

Slope = k

2 NO2(g) 2 NO(g) + O2(g)
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Second-Order Reactions

= kt +
[A]0

1

[A]t

1

A product(s)

rate = k[A]2

t = t1/2

=
t1/2

[A]
2

[A]0

Half-life for a second-order reaction

[A]0

1
= kt1/2 +

[A]0

2
=t1/2

k[A]0

1
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Second-Order Reactions

=t1/2
k[A]0

1

For a second-order 

reaction, the half-life is 

dependent on the initial 

concentration.

Each successive half-life 

is twice as long as the 

preceding one.
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Reaction Rates and Temperature: The 

Arrhenius Equation

The rate constant is dependent on temperature.

2 N2O5(g) 4 NO2(g) + O2(g)

rate = k[N2O5]

Typically, as the temperature increases, the rate of reaction 

increases.
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Reaction Rates and Temperature: The 

Arrhenius Equation
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Reaction Rates and Temperature: The 

Arrhenius Equation

Transition State: The configuration of atoms at the maximum 

in the potential energy profile. This is also called the activated 

complex.
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Reaction Rates and Temperature: The 

Arrhenius Equation

Collision Theory: As the average kinetic energy increases, 

the average molecular speed increases, and thus the collision 

rate increases.
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Reaction Rates and Temperature: The 

Arrhenius Equation

k = Ae–E /RTa

k Rate constant

A Collision frequency factor

Ea Activation energy

R Gas constant

T Temperature (K)
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Using the Arrhenius Equation

ln(k) = ln(A) + ln e        

RT

Ea
ln(k) = ln(A) –

y =       mx +   b

+ ln(A)
T

1

R

–Ea
ln(k) =

rearrange 

the equation

–Ea/RT
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Reaction Mechanisms

Reaction Mechanism: A sequence of reaction steps 

that describes the pathway from reactants to products

Elementary Reaction (step): A single step in a 

reaction mechanism
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Reaction Mechanisms

An elementary reaction describes an individual 

molecular event.

The overall reaction describes the reaction stoichiometry 

and is a summation of elementary reactions.
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Reaction Mechanisms

Experimental evidence suggests that the reaction 

between NO2 and CO takes place by a two-step 

mechanism:

NO3(g) + CO(g) NO2(g) + CO2(g)

NO2(g) + NO2(g) NO(g) + NO3(g)

NO2(g) + CO(g) NO(g) + CO2(g)

elementary reaction

overall reaction

elementary reaction
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Reaction Mechanisms

NO3(g) + CO(g) NO2(g) + CO2(g)

NO2(g) + NO2(g) NO(g) + NO3(g)
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Reaction Mechanisms

Experimental evidence suggests that the reaction between 

NO2 and CO takes place by a two-step mechanism:

A reactive intermediate is formed in one step and 

consumed in a subsequent step.

NO3(g) + CO(g) NO2(g) + CO2(g)

NO2(g) + NO2(g) NO(g) + NO3(g)

NO2(g) + CO(g) NO(g) + CO2(g)

elementary reaction

overall reaction

elementary reaction
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Reaction Mechanisms-Molecularity

Molecularity: A classification of an elementary 

reaction based on the number of molecules (or 

atoms) on the reactant side of the chemical equation
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Reaction Mechanisms-Molecularity

Unimolecular Reaction

O3
*(g) O2(g) + O(g)
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Reaction Mechanisms-Molecularity

Bimolecular Reaction

O3(g) + O(g) 2 O2(g)
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Reaction Mechanisms-Molecularity

Termolecular Reaction

O(g) + O(g) + M(g) O2(g) + M(g)
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Rate Laws for Elementary Reactions

The rate law for an elementary reaction follows 

directly from its molecularity because an elementary 

reaction is an individual molecular event.
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Rate Laws for Elementary Reactions

Termolecular Reaction

O3
*(g) O2(g) + O(g) rate = k[O3]

Unimolecular Reaction

rate = k[O3][O]O3(g) + O(g) 2 O2(g)

Bimolecular Reaction

O(g) + O(g) + M(g) O2(g) + M(g) rate = k[O]2[M]
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Rate Laws for Elementary Reactions
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Rate Laws for Overall Reactions

Rate-Determining Step: The slow step in a reaction 

mechanism since it acts as a bottleneck and limits 

the rate at which reactants can be converted to 

products
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Rate Laws for Overall Reactions

NO3(g) + CO(g) NO2(g) + CO2(g)

NO2(g) + NO2(g) NO(g) + NO3(g)

NO2(g) + CO(g) NO(g) + CO2(g)

fast step

overall reaction

slow step

Based on the slow step: rate = k1[NO2]
2

k2

k1

Multistep Reactions with an Initial Slow Step
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Rate Laws for Overall Reactions

N2O(g) + H2(g) N2(g) + H2O(g)

2 NO(g) + 2H2(g) N2(g) + 2 H2O(g)

slow step

overall reaction

fast step, reversible

Based on the slow step: rate = k2[N2O2][H2]

k3

Multistep Reactions with an Initial Fast Step

N2O2(g) + H2(g) N2O(g) + H2O(g)
k2

fast step

K–1

2 NO(g) N2O2(g)
k1
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Rate Laws for Overall Reactions

rate = k2[N2O2][H2]

intermediate

First step: Ratereverse = k–1[N2O2]Rateforward = k1[NO]2

k1[NO]2 = k–1[N2O2]

[NO]2[N2O2] = K–1

k1

Slow step: rate = k2[N2O2][H2] rate = k2 [NO]2[H2]K–1

k1
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Rate Laws for Overall Reactions

Procedure for Studying Reaction Mechanisms
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Using the Arrhenius Equation

Plot ln(k) versus          
T

1

R

–Ea
Slope =

+ ln(A)
T

1

R

–Ea
ln(k) =
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Catalysis

Catalyst: A substance that increases the rate of a 

reaction without itself being consumed in the reaction. 

A catalyst is used in one step and regenerated in a 

later step.

H2O2(aq) + I1–(aq) H2O(l) + IO1–(aq)

H2O2(aq) + IO1–(aq) H2O(l) + O2(g) + I1–(aq)

2H2O2(aq) 2H2O(l) + O2(g) overall reaction

rate-determining

step

fast step
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Catalysis

Since the catalyst is involved in the rate determining 

step, it often appears in the rate law.

rate = k[H2O2][I
1–]

H2O2(aq) + I1–(aq) H2O(l) + IO1–(aq)

H2O2(aq) + IO1–(aq) H2O(l) + O2(g) + I1–(aq)

2H2O2(aq) 2H2O(l) + O2(g) overall reaction

rate-determining

step

fast step
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Catalysis
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Catalysis
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Homogeneous and Heterogeneous 

Catalysts

Homogeneous Catalyst: A catalyst that exists in 

the same phase as the reactants

Heterogeneous Catalyst: A catalyst that exists in 

a different phase from that of the reactants
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Homogeneous and Heterogeneous 

Catalysts
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Homogeneous and Heterogeneous 

Catalysts


