

Lecture Presentation

Chapter 14

Chemical

 EquilibriumJohn E. McMurry Robert C. Fay

The Equilibrium State

Chemical Equilibrium: The state reached when the concentrations of reactants and products remain constant over time

The Equilibrium State

$\mathrm{N}_{2} \mathrm{O}_{4}(g) \rightleftharpoons 2 \mathrm{NO}_{2}(g)$
 Colorless Brown

The Equilibrium State

$\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}_{2}(\mathrm{~g})$

(a) Only $\mathrm{N}_{2} \mathrm{O}_{4}$ is present initially.

(b) Only NO_{2} is present initially.

In both experiments, a state of chemical equilibrium is reached when the concentrations level off at constant values: $\left[\mathrm{N}_{2} \mathrm{O}_{4}\right]=0.0337 \mathrm{M} ;\left[\mathrm{NO}_{2}\right]=0.0125 \mathrm{M}$.

The Equilibrium State

Time \longrightarrow
When the two rates become equal, an equilibrium state is attained and there are no further changes in concentrations.

The Equilibrium Constant K_{c}

TABLE 14.1 Concentration Data at $25^{\circ} \mathrm{C}$ for the Reaction $\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}_{2}(\mathrm{~g})$

	Initial Concentration (M)		Equilibrium Concentrations (M)		Equilibrium Constant Expression
Experiment	$\left[\mathrm{N}_{2} \mathrm{O}_{4}\right]$	$\left[\mathrm{NO}_{2}\right]$	$\left[\mathrm{N}_{2} \mathrm{O}_{4}\right]$	$\left[\mathrm{NO}_{2}\right]$	$\left[\mathrm{NO}_{2}\right]^{2} /\left[\mathrm{N}_{2} \mathrm{O}_{4}\right]$
1	0.0400	0.0000	0.0337	0.0125	4.64×10^{-3}
2	0.0000	0.0800	0.0337	0.0125	4.64×10^{-3}
3	0.0600	0.0000	0.0522	0.0156	4.66×10^{-3}
4	0.0000	0.0600	0.0246	0.0107	4.65×10^{-3}
5	0.0200	0.0600	0.0429	0.0141	4.63×10^{-3}

Why?

The Equilibrium Constant K_{c}

For a general reversible reaction:

$$
a \mathrm{~A}+b \mathrm{~B} \rightleftharpoons c \mathrm{C}+d \mathrm{D}
$$

Equilibrium constant expression
For the following reaction: $\mathrm{N}_{2} \mathrm{O}_{4}(g) \rightleftharpoons 2 \mathrm{NO}_{2}(g)$

$$
K_{\mathrm{c}}=\frac{\left[\mathrm{NO}_{2}\right]^{2}}{\left[\mathrm{~N}_{2} \mathrm{O}_{4}\right]}=4.64 \times 10^{-3}\left(\text { at } 25^{\circ} \mathrm{C}\right)
$$

The Equilibrium Constant K_{c}

$\mathrm{TABL}=14.1$ Concentration Data at $25^{\circ} \mathrm{C}$ for the Reaction
$\mathrm{N}_{2} \mathrm{O}_{4}(g) \stackrel{ }{\rightleftharpoons} \mathrm{NO}_{2}(g)$

```
N}\mp@subsup{\mathbf{N}}{4}{}(g)\rightleftharpoons2\mp@subsup{\textrm{NO}}{2}{(}
```

	Initial Concentrations (M)		Equilibrium Concentrations (M)		Equilibrium Constant Expression
Experiment	$\left[\mathrm{N}_{2} \mathrm{O}_{4}\right]$	$\left[\mathrm{NO}_{2}\right]$	$\left[\mathrm{N}_{2} \mathrm{O}_{4}\right]$	$\left[\mathrm{NO}_{2}\right]$	$\left[\mathrm{NO}_{2}\right]^{2} /\left[\mathrm{N}_{2} \mathrm{O}_{4}\right]$
1	0.0400	0.0000	0.0337	0.0125	4.64×10^{-3}
2	0.0000	0.0800	0.0337	0.0125	4.64×10^{-3}
3	0.0600	0.0000	0.0522	0.0156	4.66×10^{-3}
4	0.0000	0.0600	0.0246	0.0107	4.65×10^{-3}
5	0.0200	0.0600	0.0429	0.0141	4.63×10^{-3}

Experiment 1
Experiment 5

$$
K_{\mathrm{c}}=\frac{\left[\mathrm{NO}_{2}\right]^{2}}{\left[\mathrm{~N}_{2} \mathrm{O}_{4}\right]} \quad \frac{(0.0125)^{2}}{0.0337}=4.64 \times 10^{-3}
$$

$(0.0141)^{2}$
0.0429

The Equilibrium Constant K_{c}

The equilibrium constant and the equilibrium constant expression are for the chemical equation as written.

$$
\mathrm{N}_{2}(g)+3 \mathrm{H}_{2}(g) \rightleftharpoons 2 \mathrm{NH}_{3}(g)
$$

$$
K_{\mathrm{c}}=\frac{\left[\mathrm{NH}_{3}\right]^{2}}{\left[\mathrm{~N}_{2}\right]\left[\mathrm{H}_{2}\right]^{3}}
$$

$$
2 \mathrm{NH}_{3}(g) \rightleftharpoons \mathrm{N}_{2}(g)+3 \mathrm{H}_{2}(g) \quad K_{\mathrm{c}}^{\prime}=\frac{\left[\mathrm{N}_{2}\left[\mathrm{H}_{2}\right]^{3}\right.}{\left[\mathrm{NH}_{3}\right]^{2}}=\frac{1}{K_{\mathrm{c}}}
$$

$2 \mathrm{~N}_{2}(g)+6 \mathrm{H}_{2}(g) \rightleftharpoons 4 \mathrm{NH}_{3}(g)$

$$
K_{\mathrm{c}}^{\prime}=\frac{\left[\mathrm{NH}_{3}\right]^{4}}{\left[\mathrm{~N}_{2}\right]^{2}\left[\mathrm{H}_{2}\right]^{6}}=K_{\mathrm{c}}^{2}
$$

The Equilibrium Constant K_{c}

$$
\begin{aligned}
& \mathrm{N}_{2} \mathrm{O}_{4}(g) \rightleftharpoons 2 \mathrm{NO}_{2}(g) \\
& K_{\mathrm{p}}=\frac{\left(P_{\mathrm{NO}_{2}}\right)^{2}}{P_{\mathrm{N}_{2} \mathrm{O}_{4}}}
\end{aligned}
$$

\boldsymbol{P} is the partial pressure of that component.

The Equilibrium Constant K_{c}

$$
K_{\mathrm{p}}=K_{\mathrm{c}}(R T)^{\Delta n} \quad \boldsymbol{R} \text { is the gas constant, } 0.08206 \frac{\mathrm{~L} \text { atm }}{\mathrm{K} \mathrm{~mol}} .
$$

\boldsymbol{T} is the absolute temperature (kelvin).
$\Delta \boldsymbol{n}$ is the number of moles of gaseous products minus the number of moles of gaseous reactants.

Heterogeneous Equilibria

$\mathrm{CaCO}_{3}(s) \rightleftharpoons \mathrm{CaO}(s)+\mathrm{CO}_{2}(g)$

Limestone Lime

$$
K_{\mathrm{c}}=\frac{[\mathrm{CaO}]\left[\mathrm{CO}_{2}\right]}{\left[\mathrm{CaCO}_{3}\right]}=\frac{(1)\left[\mathrm{CO}_{2}\right]}{(1)}=\left[\mathrm{CO}_{2}\right]
$$

Pure solids and pure liquids are not included.

$$
K_{\mathrm{c}}=\left[\mathrm{CO}_{2}\right] \quad K_{\mathrm{p}}=P_{\mathrm{CO}_{2}}
$$

Heterogeneous Equilibria

(b) Large amount of CaCO_{3}; small amount of CaO

At the same temperature, the equilibrium pressure of CO_{2} is the same in (a) and (b), independent of how much solid CaCO_{3} and CaO is present.

Using the Equilibrium Constant

$2 \mathrm{H}_{2} \mathrm{O}(g) \rightleftharpoons 2 \mathrm{H}_{2}(g)+\mathrm{O}_{2}(g)$
(at 500 K) $K_{\mathrm{c}}=4.2 \times 10^{-48}$

The larger the value of the equilibrium constant K_{c} the greater the extent of reaction:

$\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{HI}(\mathrm{g})$
(at 700 K) $K_{\mathrm{c}}=57.0$

$2 \mathrm{H}_{2}(g)+\mathrm{O}_{2}(g) \rightleftharpoons 2 \mathrm{H}_{2} \mathrm{O}(g)$

(at 500 K) $K_{\mathrm{c}}=2.4 \times 10^{47}$

Using the Equilibrium Constant

$$
a \mathrm{~A}+b \mathrm{~B} \rightleftharpoons c \mathrm{C}+d \mathrm{D}
$$

Reaction quotient:
 $$
Q_{\mathrm{c}}=\frac{[\mathrm{C}]_{t}^{c}[\mathrm{D}]_{t}^{d}}{[\mathrm{~A}]_{t}^{a}[\mathrm{~B}]_{t}^{b}}
$$

The reaction quotient, Q_{C}, is defined in the same way as the equilibrium constant, K_{c}, except that the concentrations in Q_{c} are not necessarily equilibrium values.

Using the Equilibrium Constant

- If $Q_{\mathrm{c}}<K_{\mathrm{c}}$ net reaction goes from left to right (reactants to products).
- If $Q_{\mathrm{c}}>K_{\mathrm{c}}$ net reaction goes from right to left (products to reactants).
- If $Q_{\mathrm{c}}=K_{\mathrm{c}}$ no net reaction occurs.

Using the Equilibrium Constant

The direction of net reaction depends on the relative values of Q_{c} and K_{c}.

Reactants and products are at equilibrium.

Reactants \leftarrow Products

Movement toward equilibrium changes the value of Q_{c} until it equals K_{c}, but the value of K_{c} remains constant.

Using the Equilibrium Constant

At $700 \mathrm{~K}, 0.500 \mathrm{~mol}$ of HI is added to a 2.00 L container and allowed to come to equilibrium. Calculate the equilibrium concentrations of $\mathrm{H}_{2}, \mathrm{I}_{2}$, and $\mathrm{HI} . \mathrm{K}_{\mathrm{c}}$ is 57.0 at 700 K .

$$
\mathrm{H}_{2}(g)+\mathrm{I}_{2}(g) \rightleftharpoons 2 \mathrm{HI}(g)
$$

Using the Equilibrium Constant

Step 1. Compute Q_{c} and compare to K_{c} to determine the direction of reaction.

Step 2. Write the balanced equation for the reaction. Under the balanced equation, make a table that lists for each substance involved in the reaction:
(a) The initial concentration
(b) The change in concentration on going to equilibrium
(c) The equilibrium concentration

In constructing the table, define x as the concentration ($\mathrm{mol} / \mathrm{L}$) of one of the substances that reacts on going to equilibrium and then use the stoichiometry of the reaction to determine the concentrations of the other substances in terms of x.

Step 3. Substitute the equilibrium concentrations into the equilibrium equation for the reaction and solve for x. If you must solve a quadratic equation, choose the mathematical solution that makes chemical sense.

Step 4. Calculate the equilibrium concentrations from the calculated value of x.

Step 5. Check your results by substituting them into the equilibrium equation.

Using the Equilibrium Constant

Set up a table:

$$
\mathrm{H}_{2}(g)+\mathrm{I}_{2}(g) \rightleftharpoons 2 \mathrm{HI}(g)
$$

0	0	0.250
$+x$	$+x$	$-2 x$
x	x	$0.250-2 x$

Substitute values into the equilibrium expression:

$$
K_{\mathrm{c}}=\frac{[\mathrm{HI}]^{2}}{\left[\mathrm{H}_{2}\right]\left[\mathrm{I}_{2}\right]} \quad 57.0=\frac{(0.250-2 x)^{2}}{x^{2}}
$$

Using the Equilibrium Constant

Solve for " x ":

$$
\sqrt{57.0}=\sqrt{\frac{(0.250-2 x)^{2}}{x^{2}}} \quad x=0.0262
$$

Determine the equilibrium concentrations:

$\mathrm{H}_{2}: 0.0262 \mathrm{M}$
$\mathrm{I}_{2}: 0.0262 \mathrm{M}$
HI: $0.250-2(0.0262)=0.198 \mathrm{M}$

Le Châtelier's Principle

Le Châtelier's Principle: If a stress is applied to a reaction mixture at equilibrium, net reaction occurs in the direction that relieves the stress.

- The concentration of reactants or products can be changed.
- The pressure and volume can be changed.
- The temperature can be changed.

Altering an Equilibrium Mixture: Changes in Concentration

$\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g})$

Net conversion of N_{2} and H_{2} to NH_{3} occurs until a new equilibrium is established. That is, the \mathbf{N}_{2} and \mathbf{H}_{2} concentrations decrease, while the NH_{3} concentration increases.

$$
\text { Time } \rightarrow
$$

Altering an Equilibrium Mixture: Changes in Concentration

In general, when an equilibrium is disturbed by the addition or removal of any reactant or product, Le Châtelier's principle predicts that

- the concentration stress of an added reactant or product is relieved by net reaction in the direction that consumes the added substance.
- the concentration stress of a removed reactant or product is relieved by net reaction in the direction that replenishes the removed substance.

Altering an Equilibrium Mixture: Changes in Concentration

$$
\mathrm{N}_{2}(g)+3 \mathrm{H}_{2}(g) \rightleftharpoons 2 \mathrm{NH}_{3}(g) \text { at } 700 \mathrm{~K}, K_{\mathrm{c}}=0.291
$$

An equilibrium mixture of $0.50 \mathrm{M} \mathrm{N}_{2}, 3.00 \mathrm{M} \mathrm{H}_{2}$, and $1.98 \mathrm{M} \mathrm{NH}_{3}$ is disturbed by increasing the N_{2} concentration to 1.50 M .

$$
Q_{\mathrm{c}}=\frac{\left[\mathrm{NH}_{3}\right]^{2}}{\left[\mathrm{~N}_{2}\right]\left[\mathrm{H}_{2}\right]^{3}}=\frac{(1.98)^{2}}{(1.50)(3.00)^{3}}=0.0968<K_{\mathrm{c}}
$$

Since $Q_{\mathrm{c}}<K_{\mathrm{c}}$, more reactants will be consumed and the net reaction will be from left to right.

Altering an Equilibrium Mixture: Changes in Concentration

$\mathrm{Fe}^{3+}(\mathrm{aq})+\mathrm{SCN}^{-}(\mathrm{aq}) \rightleftharpoons \mathrm{FeNCS}^{2+}(\mathrm{aq})$
 Pale yellow Colorless

(a) Original solution: Fe^{3+} (pale yellow), SCN-(colorless), and FeNCS^{2+} (red).

(b) After adding FeCl_{3} to (a): $\left[\mathrm{FeNCS}^{2+}\right]$ increases.

(c) After adding KSCN to (a): $\left[\mathrm{FeNCS}^{2+}\right]$ increases.

(d) After adding $\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$ to (a): [$\mathrm{FeNCS}{ }^{2+}$] decreases as $\left[\mathrm{Fe}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)^{3}{ }^{3-}\right]$ increases.

(e) After adding HgCl_{2} to (a): $\left[\mathrm{FeNCS}^{2+}\right]$ decreases as $\left[\mathrm{Hg}(\mathrm{SCN})_{4}{ }^{2}\right.$] increases.

Altering an Equilibrium Mixture: Changes in Pressure and Volume

$\mathrm{N}_{2}(g)+3 \mathrm{H}_{2}(g) \rightleftharpoons 2 \mathrm{NH}_{3}(g)$

(a) A mixture of gaseous N_{2}, H_{2}, and NH_{3} at equilibrium ($Q_{\mathrm{c}}=K_{\mathrm{c}}$).
(b) When the pressure is increased by decreasing the volume, the mixture is no longer at equilibrium $\left(Q_{c}<K_{\mathrm{c}}\right)$.

(c) Net reaction occurs from reactants to products, decreasing the total number of gaseous molecules until equilibrium is re-established ($Q_{\mathrm{c}}=K_{\mathrm{c}}$).

Altering an Equilibrium Mixture: Changes in Pressure and Volume

In general, when an equilibrium is disturbed by a change in volume that results in a corresponding change in pressure, Le Châtelier's principle predicts that

- an increase in pressure by reducing the volume will bring about net reaction in the direction that decreases the number of moles of gas.
- a decrease in pressure by expanding the volume will bring about net reaction in the direction that increases the number of moles of gas.

Altering an Equilibrium Mixture: Changes in Pressure and Volume

$$
\mathrm{N}_{2}(g)+3 \mathrm{H}_{2}(g) \rightleftharpoons 2 \mathrm{NH}_{3}(g) \text { at } 700 \mathrm{~K}, K_{\mathrm{c}}=0.291
$$

An equilibrium mixture of $0.50 \mathrm{M}_{2}, 3.00 \mathrm{M} \mathrm{H}_{2}$, and $1.98 \mathrm{M} \mathrm{NH}_{3}$ is disturbed by reducing the volume by a factor of 2 .

$$
Q_{\mathrm{c}}=\frac{\left[\mathrm{NH}_{3}\right]^{2}}{\left[\mathrm{~N}_{2}\right]\left[\mathrm{H}_{2}\right]^{3}}=\frac{(3.96)^{2}}{(1.00)(6.00)^{3}}=0.0726<K_{\mathrm{c}}
$$

Since $Q_{c}<K_{c}$, more reactants will be consumed and the net reaction will be from left to right.

Altering an Equilibrium Mixture: Changes in Temperature

$$
\mathrm{N}_{2}(g)+3 \mathrm{H}_{2}(g) \rightleftharpoons 2 \mathrm{NH}_{3}(g) \Delta H^{\circ}=-2043 \mathrm{~kJ}
$$

As the temperature increases, the equilibrium shifts from products to reactants.

Altering an Equilibrium Mixture: Changes in Temperature

In general, when an equilibrium is disturbed by a change in temperature, Le Châtelier's principle predicts that

- the equilibrium constant for an exothermic reaction (negative ΔH°) decreases as the temperature increases.
- the equilibrium constant for an endothermic reaction (positive ΔH°) increases as the temperature increases.

Altering an Equilibrium Mixture: Changes in Temperature

$$
\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}_{2}(\mathrm{~g}) ; \Delta H^{\circ}>0
$$

The darker brown color of the sample at the highest temperature indicates that the equilibrium $\mathrm{N}_{2} \mathrm{O}_{4}(g) \rightleftharpoons 2 \mathrm{NO}_{2}(g)$ shifts from reactants to products with increasing temperature, as expected for an endothermic reaction.

The Effect of a Catalyst on Equilibrium

The activation energy for the catalyzed pathway (red curve) is lower than that for the uncatalyzed pathway (blue curve) by an amount ΔE_{a}.

Reaction progress \longrightarrow
A catalyst lowers the activation energy barrier for the forward and reverse reactions by the same amount. The catalyst therefore accelerates the forward and reverse reactions by the same factor, and the composition of the equilibrium mixture is unchanged.

