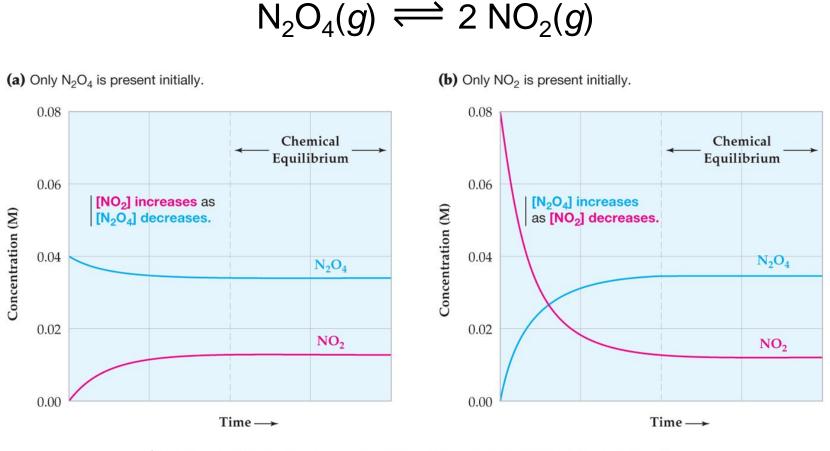


Instructor's Resource Materials (Download only) for *Chemistry*, 7e John E. McMurry, Robert C. Fay, Jill Robinson

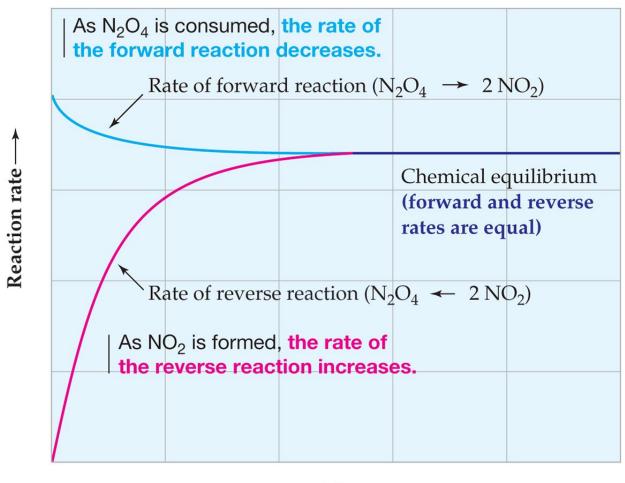
Lecture Presentation

Chapter 14

Chemical Equilibrium


John E. McMurry Robert C. Fay

Chemical Equilibrium: The state reached when the concentrations of reactants and products remain constant over time


$N_2O_4(g) \rightleftharpoons 2 NO_2(g)$ Colorless Brown

In both experiments, a state of chemical equilibrium is reached when the concentrations level off at constant values: $[N_2O_4] = 0.0337 \text{ M}; [NO_2] = 0.0125 \text{ M}.$

Instructor's Resource Materials (Download only) for *Chemistry*, 7e John E. McMurry, Robert C. Fay, Jill Robinson

Time→

When the two rates become equal, an equilibrium state is attained and there are no further changes in concentrations.

TABLE 14.1 Concentration Data at 25°C for the Reaction $N_2O_4(g) \implies 2 NO_2(g)$

	Initial		Equilibrium		Equilibrium
	Concentrati	ons (M)	Concentrations (M)		Constant Expression
Experiment	$[N_2O_4]$	$[NO_2]$	$[N_2O_4]$	$[NO_2]$	$[NO_2]^2/[N_2O_4]$
1	0.0400	0.0000	0.0337	0.0125	4.64×10^{-3}
2	0.0000	0.0800	0.0337	0.0125	4.64×10^{-3}
3	0.0600	0.0000	0.0522	0.0156	4.66×10^{-3}
4	0.0000	0.0600	0.0246	0.0107	$4.65 imes 10^{-3}$
5	0.0200	0.0600	0.0429	0.0141	4.63×10^{-3}

Why?

For a general reversible reaction:

$$aA + bB \rightleftharpoons cC + dD$$

Equilibrium equation: $K_c = \frac{[C]^c[D]^d}{[A]^a[B]^b} \leftarrow \text{Reactants}$ Equilibrium constant Equilibrium constant expression

For the following reaction: $N_2O_4(g) \rightleftharpoons 2 NO_2(g)$

$$K_{\rm c} = \frac{[NO_2]^2}{[N_2O_4]} = 4.64 \times 10^{-3} \text{ (at 25 °C)}$$

TABLE 14.1 Concentration Data at 25°C for the Reaction $N_2O_4(g) \implies 2 NO_2(g)$

		Initial		Equilibrium		Equilibrium	
		Concentrations (M)		Concentrations (M)		Constant Expression	
	Experiment	$[N_2O_4]$	$[NO_2]$	$[N_2O_4]$	$[NO_2]$	$[NO_2]^2/[N_2O_4]$	
	1	0.0400	0.0000	0.0337	0.0125	4.64×10^{-3}	
	2	0.0000	0.0800	0.0337	0.0125	$4.64 imes 10^{-3}$	
	3	0.0600	0.0000	0.0522	0.0156	4.66×10^{-3}	
	4	0.0000	0.0600	0.0246	0.0107	4.65×10^{-3}	
	5	0.0200	0.0600	0.0429	0.0141	4.63×10^{-3}	
		Ex	perim	ent 1		Experiment 5	
K _	[NO ₂] ²	(0.012	10–3				
$N_{\rm C} - 1$	$[N_2O_4]$	0.033		.64 × 1	<u> </u>	$\frac{7}{0.0429} = 4.63 \times$	ĨŪ

The equilibrium constant and the equilibrium constant expression are for the chemical equation *as written*.

2

[NH_]2

$$N_2O_4(g) \rightleftharpoons 2 NO_2(g)$$
$$\mathcal{K}_p = \frac{\left(P_{NO_2}\right)^2}{P_{N_2O_4}}$$

 \boldsymbol{g}

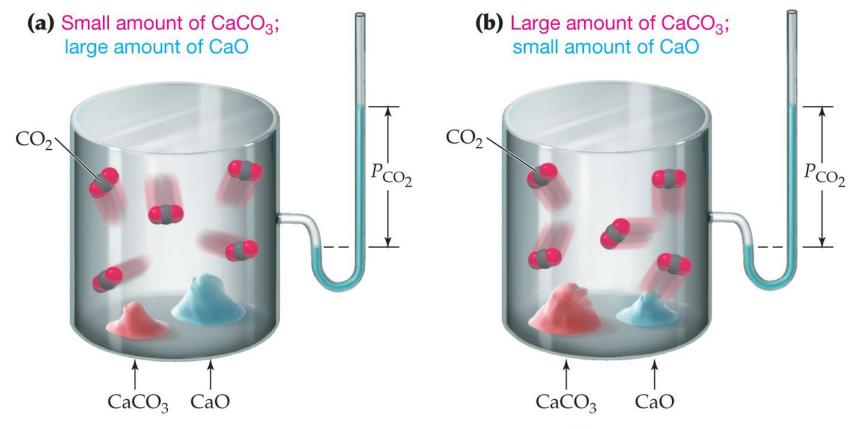
P is the partial pressure of that component.

 $K_{\rm p} = K_{\rm c} (RT)^{\Delta n}$ **R** is the gas constant, 0.08206 $\frac{\text{L atm}}{\text{K mol}}$

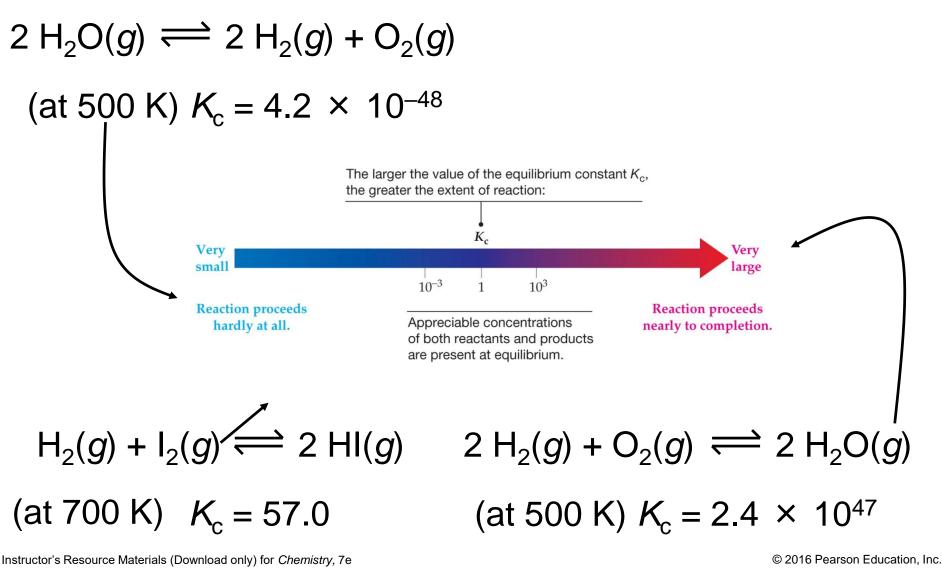
T is the absolute temperature (kelvin).

 Δn is the number of moles of gaseous products minus the number of moles of gaseous reactants.

Heterogeneous Equilibria


$$CaCO_{3}(s) \rightleftharpoons CaO(s) + CO_{2}(g)$$
Limestone Lime
$$\mathcal{K}_{c} = \frac{[CaO][CO_{2}]}{[CaCO_{3}]} = \frac{(1)[CO_{2}]}{(1)} = [CO_{2}]$$

Pure solids and pure liquids are not included.

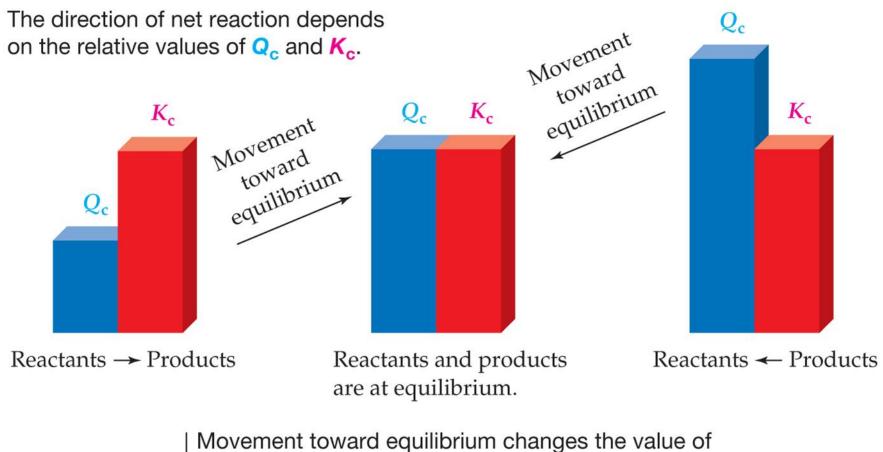

$$K_{\rm c} = [{\rm CO}_2] \qquad K_{\rm p} = P_{\rm CO_2}$$

Instructor's Resource Materials (Download only) for *Chemistry*, 7e John E. McMurry, Robert C. Fay, Jill Robinson

Heterogeneous Equilibria

At the same temperature, the equilibrium pressure of CO_2 is the same in (a) and (b), independent of how much solid $CaCO_3$ and CaO is present.

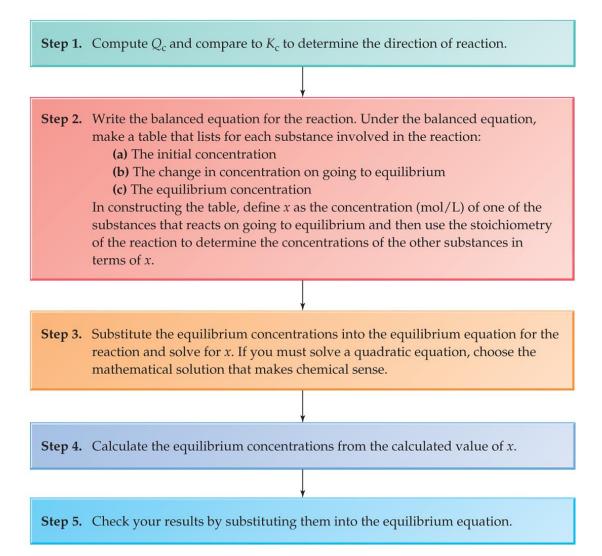
John E. McMurry, Robert C. Fay, Jill Robinson


$aA + bB \rightleftharpoons cC + dD$

Reaction quotient: $Q_c = \frac{[C]_t^c[D]_t^d}{[A]_t^a[B]_t^b}$

The reaction quotient, Q_c , is defined in the same way as the equilibrium constant, K_c , except that the concentrations in Q_c are not necessarily equilibrium values.

• If $Q_c < K_c$ net reaction goes from left to right (*reactants to products*).


- If $Q_c > K_c$ net reaction goes from right to left (*products* to reactants).
- If $Q_c = K_c$ no net reaction occurs.

 Q_c until it equals K_c , but the value of K_c remains constant.

At 700 K, 0.500 mol of HI is added to a 2.00 L container and allowed to come to equilibrium. Calculate the equilibrium concentrations of H₂, I₂, and HI . K_c is 57.0 at 700 K.

$$H_2(g) + I_2(g) \rightleftharpoons 2 HI(g)$$

Set up a table:

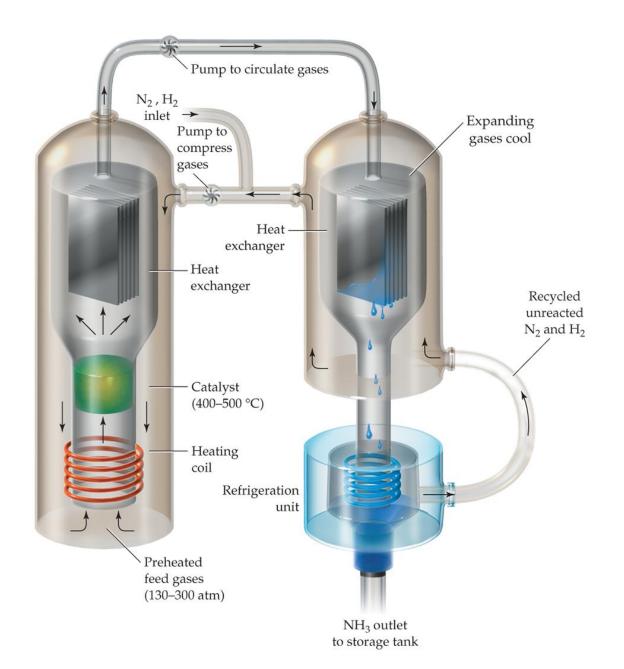
$$H_2(g) + I_2(g) \rightleftharpoons 2 HI(g)$$

$$0 \quad 0 \quad 0.250$$

$$+x \quad +x \quad -2x$$

$$x \quad x \quad 0.250 - 2x$$

Substitute values into the equilibrium expression:

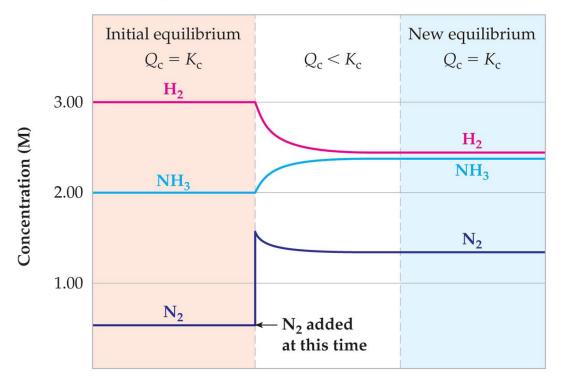

$$K_{c} = \frac{[HI]^{2}}{[H_{2}][I_{2}]}$$
 57.0 = $\frac{(0.250 - 2x)^{2}}{x^{2}}$

Instructor's Resource Materials (Download only) for *Chemistry*, 7e John E. McMurry, Robert C. Fay, Jill Robinson

Solve for "x":

$$\sqrt{57.0} = \sqrt{\frac{(0.250 - 2x)^2}{x^2}} \quad x = 0.0262$$

Determine the equilibrium concentrations:


Le Châtelier's Principle

Le Châtelier's Principle: If a stress is applied to a reaction mixture *at equilibrium*, net reaction occurs in the direction that relieves the stress.

- The concentration of reactants or products can be changed.
- The pressure and volume can be changed.
- The temperature can be changed.

$N_2(g) + 3 H_2(g) \rightleftharpoons 2 NH_3(g)$

Net conversion of N_2 and H_2 to NH_3 occurs until a new equilibrium is established. That is, the N_2 and H_2 concentrations decrease, while the NH_3 concentration increases.

Instructor's Resource Materials (Download only) for *Chemistry*, 7e John E. McMurry, Robert C. Fay, Jill Robinson

In general, when an equilibrium is disturbed by the addition or removal of any reactant or product, Le Châtelier's principle predicts that

- the concentration stress of an *added* reactant or product is relieved by net reaction in the direction that *consumes* the added substance.
- the concentration stress of a *removed* reactant or product is relieved by net reaction in the direction that *replenishes* the removed substance.

 $N_2(g) + 3 H_2(g) \rightleftharpoons 2 NH_3(g)$ at 700 K, $K_c = 0.291$

An equilibrium mixture of 0.50 M N₂, 3.00 M H₂, and 1.98 M NH₃ is disturbed by increasing the N₂ concentration to 1.50 M.

$$Q_{\rm c} = \frac{[{\rm NH}_3]^2}{[{\rm N}_2][{\rm H}_2]^3} = \frac{(1.98)^2}{(1.50)(3.00)^3} = 0.0968 < K_{\rm c}$$

Since $Q_c < K_c$, more reactants will be *consumed* and the net reaction will be from *left* to *right*.

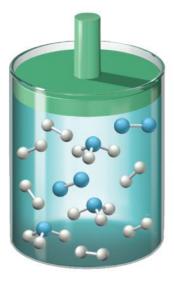
$Fe^{3+}(aq) + SCN^{-}(aq) \Longrightarrow FeNCS^{2+}(aq)$ Pale yellow Colorless Red

(a) Original solution: Fe^{3+} (pale yellow), SCN^{-} (colorless), and $FeNCS^{2+}$ (red).

(b) After adding $FeCl_3$ to (a): [FeNCS²⁺] increases.

(c) After adding KSCN to (a): [FeNCS²⁺] increases.

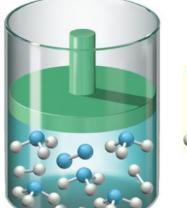
(d) After adding $H_2C_2O_4$ to (a): [FeNCS²⁺] decreases as [Fe(C₂O₄)₃³⁻] increases. (e) After adding $HgCl_2$ to (a): [FeNCS²⁺] decreases as [Hg(SCN)₄²⁻] increases.

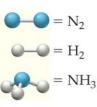


Altering an Equilibrium Mixture: Changes in Pressure and Volume

$N_2(g) + 3 H_2(g) \rightleftharpoons 2 NH_3(g)$


(a) A mixture of gaseous N₂, H₂, and NH₃ at equilibrium $(Q_c = K_c)$.


(b) When the pressure is increased by decreasing the volume, the mixture is no longer at equilibrium ($Q_c < K_c$). (c) Net reaction occurs from reactants to products, decreasing the total number of gaseous molecules until equilibrium is re-established


 $(Q_{\rm c} = K_{\rm c}).$

 $\frac{P \text{ increases as}}{V \text{ decreases}}$

Net reaction to form products

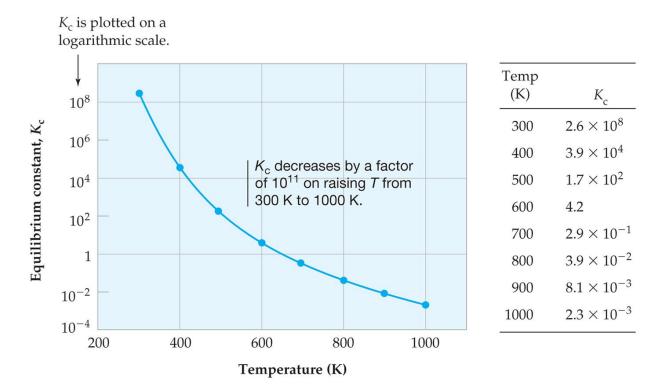
Altering an Equilibrium Mixture: Changes in Pressure and Volume

In general, when an equilibrium is disturbed by a change in volume that results in a corresponding change in pressure, Le Châtelier's principle predicts that

- an *increase* in pressure by reducing the volume will bring about net reaction in the direction that *decreases* the number of moles of gas.
- a *decrease* in pressure by expanding the volume will bring about net reaction in the direction that *increases* the number of moles of gas.

Altering an Equilibrium Mixture: Changes in Pressure and Volume

$$N_2(g) + 3 H_2(g) \rightleftharpoons 2 NH_3(g)$$
 at 700 K, $K_c = 0.291$


An equilibrium mixture of 0.50 M N₂, 3.00 M H₂, and 1.98 M NH₃ is disturbed by reducing the volume by a factor of 2.

$$Q_{\rm c} = \frac{[{\rm NH}_3]^2}{[{\rm N}_2][{\rm H}_2]^3} = \frac{(3.96)^2}{(1.00)(6.00)^3} = 0.0726 < K_{\rm c}$$

Since $Q_c < K_c$, more reactants will be *consumed* and the net reaction will be from *left* to *right*.

Altering an Equilibrium Mixture: Changes in Temperature

 $N_2(g) + 3 H_2(g) \rightleftharpoons 2 NH_3(g) \Delta H^\circ = -2043 kJ$

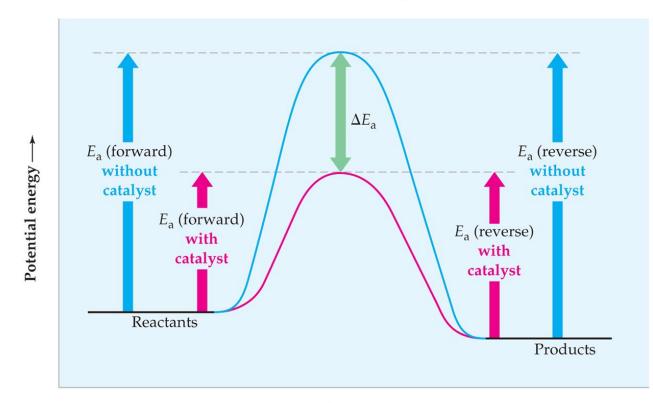
As the temperature increases, the equilibrium shifts from products to reactants.

Instructor's Resource Materials (Download only) for *Chemistry*, 7e John E. McMurry, Robert C. Fay, Jill Robinson

Altering an Equilibrium Mixture: Changes in Temperature

In general, when an equilibrium is disturbed by a change in temperature, Le Châtelier's principle predicts that

- the equilibrium constant for an *exothermic* reaction (negative △H^e) *decreases* as the temperature *increases*.
- the equilibrium constant for an *endothermic* reaction (positive ΔH°) *increases* as the temperature *increases*.


Altering an Equilibrium Mixture: Changes in Temperature

 $N_2O_4(g) \rightleftharpoons 2 NO_2(g); \Delta H^\circ > 0$

The darker **brown** color of the sample at the highest temperature indicates that the equilibrium $N_2O_4(g) \rightleftharpoons 2 NO_2(g)$ shifts from reactants to products with increasing temperature, as expected for an endothermic reaction.

The Effect of a Catalyst on Equilibrium

The activation energy for the **catalyzed pathway** (red curve) is lower than that for the **uncatalyzed pathway** (blue curve) by an amount ΔE_a .

Reaction progress →

A catalyst lowers the activation energy barrier for the forward and reverse reactions by the same amount. The catalyst therefore accelerates the forward and reverse reactions by the same factor, and the composition of the equilibrium mixture is unchanged.