

Lecture Presentation

Chapter 15

Aqueous Equilibria: Acids and Bases

John E. McMurry Robert C. Fay

Acid-Base Concepts: The Brønsted-Lowry

 TheoryArrhenius Acid: A substance that dissociates in water to produce hydrogen ions, H^{+}

$$
\mathrm{HA}(a q) \rightleftharpoons \mathrm{H}^{+}(a q)+\mathrm{A}^{-}(a q)
$$

Arrhenius Base: A substance that dissociates in water to produce hydroxide ions, OH^{-}

$$
\mathrm{MOH}(a q) \rightleftharpoons \mathrm{M}^{+}(a q)+\mathrm{OH}^{-}(a q)
$$

Acid-Base Concepts: The Brønsted-Lowry

 TheoryBrønsted-Lowry Acid: A substance that can transfer hydrogen ions, H^{+}. In other words, a proton donor

Brønsted-Lowry Base: A substance that can accept hydrogen ions, H^{+}. In other words, a proton acceptor

Conjugate Acid-Base Pairs: Chemical species whose formulas differ only by one hydrogen ion, H^{+}

Acid-Base Concepts: The Brønsted-Lowry Theory

Acid-Dissociation Equilibrium

Acid-Base Concepts: The Brønsted-Lowry Theory

Base-Dissociation Equilibrium

Acid Strength and Base Strength

$$
\mathrm{HA}(a q)+\mathrm{H}_{2} \mathrm{O}(\Lambda) \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}(a q)+\mathrm{A}^{-}(a q)
$$

Acid Base Acid Base

With equal concentrations of reactants and products, what will be the direction of reaction?

Stronger acid + Stronger base \longrightarrow Weaker acid + Weaker base

Acid Strength and Base Strength

Weak Acid: An acid that is only partially dissociated in water and is thus a weak electrolyte

Acid Strength and Base Strength

TABLE 15.1 Relative Strengths of Conjugate Acid-Base Pairs

	Acid, HA		Base, A^{-}			
Stronger acid	$\left.\begin{array}{l} \mathrm{HClO}_{4} \\ \mathrm{HCl} \\ \mathrm{H}_{2} \mathrm{SO}_{4} \\ \mathrm{HNO}_{3} \end{array}\right\}$	Strong acids: 100% dissociated in aqueous solution.	$\left.\begin{array}{l} \mathrm{ClO}_{4}^{-} \\ \mathrm{Cl}^{-} \\ \mathrm{HSO}_{4}^{-} \\ \mathrm{NO}_{3}^{-} \end{array}\right\}$	Very weak bases: Negligible tendency to be protonated in aqueous solution.	Weaker base	
	$\mathrm{H}_{3} \mathrm{O}^{+}$		$\mathrm{H}_{2} \mathrm{O}$			
	$\begin{aligned} & \mathrm{HSO}_{4}^{-} \\ & \mathrm{H}_{2} \end{aligned}$		$\mathrm{SO}_{4}{ }^{2-}$ $\mathrm{H}_{2} \mathrm{PO}_{4}{ }^{-}$ $\mathrm{NO}_{2}{ }^{-}$			
		Exist in solution	F^{-}	Weak bases: Moderate tendency		
	$\mathrm{H}_{2} \mathrm{CO}_{3}$	as a mixture of $\mathrm{HA}, \mathrm{A}^{-}$, and $\mathrm{H}_{3} \mathrm{O}^{+}$.	$\begin{aligned} & \mathrm{CH}_{3} \mathrm{CO}_{2}^{-} \\ & \mathrm{HCO}_{3}^{-} \\ & \mathrm{HS}^{-} \end{aligned}$	to be protonated in aqueous solution.		
	NHNH_{4}^{+}HCN		$\begin{aligned} & \mathrm{HS}^{-} \\ & \mathrm{NH}_{3} \end{aligned}$			
				NH_{3}		
	HCN $\mathrm{HCO}_{3}-$		$\mathrm{CO}_{3}{ }^{--}$)			
	$\mathrm{H}_{2} \mathrm{O}$		OH^{-}			
Weaker acid	$\left.\begin{array}{l} \mathrm{NH}_{3} \\ \mathrm{OH}^{-} \\ \mathrm{H}_{2} \end{array}\right\}$	Very weak acids: $\}$ Negligible tendency to dissociate.	$\left.\begin{array}{l} \mathrm{NH}_{2}^{-} \\ \mathrm{O}^{2-} \\ \mathrm{H}^{-} \end{array}\right\}$	Strong bases: 100% protonated in		
				\int aqueous solution.	base	

Hydrated Protons and Hydronium Ions

$$
\mathrm{HA}(a q) \rightleftharpoons \mathrm{H}^{+}(a q)+\mathrm{A}^{-}(a q)
$$

Due to high reactivity of the hydrogen ion, it is actually hydrated by one or more water molecules.

$$
\left[\mathrm{H}\left(\mathrm{H}_{2} \mathrm{O}\right)_{n}\right]^{+} \begin{cases}n=1 & \mathrm{H}_{3} \mathrm{O}^{+} \\ n=2 & \mathrm{H}_{5} \mathrm{O}_{2}{ }^{+} \\ n=3 & \mathrm{H}_{7} \mathrm{O}_{3}{ }^{+} \\ n=4 & \mathrm{H}_{9} \mathrm{O}_{4}{ }^{+}\end{cases}
$$

For our purposes, H^{+}is equivalent to $\mathrm{H}_{3} \mathrm{O}^{+}$.

Factors That Affect Acid Strength

Bond Polarity

Acid strength

Factors That Affect Acid Strength

Bond Strength

Factors That Affect Acid Strength

Oxoacids

Acid strength
 $$
\mathrm{H}-\mathrm{O}-\mathrm{I}<\mathrm{H}-\mathrm{O}-\mathrm{Br}<\mathrm{H}-\mathrm{O}-\mathrm{Cl}
$$
 2.5
 2.8
 3.0

Electronegativity of Y

Electronegativity of Y

Factors That Affect Acid Strength

Oxoacids

Oxidation number of Cl

Dissociation of Water

The hydronium ion, $\mathrm{H}_{3} \mathrm{O}^{+}$

Dissociation of Water: $2 \mathrm{H}_{2} \mathrm{O}(\Lambda) \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}(a q)+\mathrm{OH}^{-}(a q)$
Ion-Product Constant for Water: $K_{w}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right]$

$$
\begin{aligned}
& \text { at } 25^{\circ} \mathrm{C}:\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\left[\mathrm{OH}^{-}\right]=1.0 \times 10-^{7} \mathrm{M} \\
& \qquad K_{\mathrm{w}}=\left(1.0 \times 10-^{7}\right)\left(1.0 \times 10-^{7}\right)=\mathbf{1 . 0} \times \mathbf{1 0} \mathbf{- 1}^{14}
\end{aligned}
$$

Dissociation of Water

$$
\begin{gathered}
K_{\mathrm{w}}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right][\mathrm{OH}-]=1.0 \times 10-14 \\
{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\frac{1.0 \times 10--^{14}}{[\mathrm{OH}-]} \quad\left[\mathrm{OH}^{-}\right]=\frac{1.0 \times 10--^{14}}{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]}}
\end{gathered}
$$

Dissociation of Water

Dissociation of Water

Acidic: $\quad\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]>\left[\mathrm{OH}^{-}\right]$
Neutral: $\quad\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\left[\mathrm{OH}^{-}\right]$
Basic:
$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]<\left[\mathrm{OH}^{-}\right]$

The pH Scale

$\mathrm{pH}=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right] \quad\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=10^{-\mathrm{pH}}$
Acidic:
$\mathrm{pH}<7$

Neutral: $\quad \mathrm{pH}=7$
Basic:
$\mathrm{pH}>7$

The pH Scale

The hydronium ion concentration for lemon juice is approximately 0.0025 M . What is the pH when $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=$ 0.0025 M ?

2 significant figures

$$
\mathrm{pH}=-\log (0.0025)=2.60
$$
2 decimal places

The pH Scale

Calculate the pH of an aqueous ammonia solution that has an OH^{-}concentration of 0.0019 M .

$$
\begin{gathered}
{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\frac{1.0 \times 10-14}{\left[\mathrm{OH}^{1}-\right]}=\frac{1.0 \times 10-^{14}}{0.0019}=5.3 \times 10-^{12} \mathrm{M}} \\
\mathrm{pH} \\
=-\log \left(5.3 \times 10-^{12}\right)=11.28
\end{gathered}
$$

The pH Scale

Acid rain is a matter of serious concern because most species of fish die in waters having a pH lower than 4.5-5.0. Calculate $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$in a lake that has a pH of 4.5 .

$$
\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=10^{-4.5}=3 \times 10-5 \mathrm{M}
$$

Measuring pH

Acid-Base Indicator: A substance that changes color in a specific pH range. Indicators exhibit pH-dependent color changes because they are weak acids and have different colors in their acid (HIn) and conjugate base (In^{-}) forms.
$\mathrm{HIn}(a q)+\mathrm{H}_{2} \mathrm{O}(\Lambda) \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}(a q)+\mathrm{In}^{-}(a q)$
Color A
Color B

Measuring pH

The pH in Solutions of Strong Acids and Strong Bases

What is the pH of a 0.025 M solution of HNO_{3} ?

$$
\mathrm{HNO}_{3}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}\left(\eta \xrightarrow{100 \%} \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{NO}_{3}^{-}(\mathrm{aq})\right.
$$

Since HNO_{3} is a strong acid, $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\left[\mathrm{HNO}_{3}\right]$.

$$
\mathrm{pH}=-\log \left(\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\right)=-\log (0.025)=1.60
$$

The pH in Solutions of Strong Acids and Strong Bases

What is the pH of a 0.025 M solution of NaOH ?

$$
\mathrm{NaOH}(a q) \longrightarrow \mathrm{Na}^{+}(a q)+\mathrm{OH}^{-}(a q)
$$

Since NaOH is a strong base, $\left[\mathrm{OH}^{-}\right]=[\mathrm{NaOH}]$.

$$
\begin{aligned}
& {\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\frac{1.0 \times 10-^{14}}{\left[\mathrm{OH}^{-}\right]}=\frac{1.0 \times 10-^{14}}{0.025}=4.0 \times 10-{ }^{13} \mathrm{M}} \\
& \mathrm{pH}=-\log \left(\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\right)=-\log \left(4.0 \times 10-^{13}\right)=12.40
\end{aligned}
$$

Equilibria in Solutions of Weak Acids

$\mathrm{HA}(a q)+\mathrm{H}_{2} \mathrm{O}(\Lambda) \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}(a q)+\mathrm{A}^{-}(a q)$
Acid-Dissociation Constant: $K_{\mathrm{a}}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]}$

TABLE 15.2 Acid-Dissociation Constants at $25^{\circ} \mathrm{C}$

* The proton that is transferred to water when the acid dissociates is shown in red.
${ }^{\dagger} \mathrm{p} K_{\mathrm{a}}=-\log K_{\mathrm{a}}$.

Equilibria in Solutions of Weak Acids

The pH of 0.250 M HF is 2.036 . What are the values of K_{a} and $\mathrm{p} K_{\mathrm{a}}$ for hydrofluoric acid?

$$
\mathrm{HF}(a q)+\mathrm{H}_{2} \mathrm{O}\left(\Lambda \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}(a q)+\mathrm{F}^{-}(a q)\right.
$$

0.250		≈ 0	0
		$+x$	$+x$
$0.250-x$		x	x

$$
x=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=10-2.036=0.00920 \mathrm{M}
$$

Equilibria in Solutions of Weak Acids

$$
\begin{aligned}
& K_{\mathrm{a}}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{F}^{-}\right]}{[\mathrm{HF}]} \\
& {\left[\mathrm{F}^{-}\right]=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=0.00920 \mathrm{M}} \\
& {[\mathrm{HF}]=0.250-x=0.250-0.00920=0.241 \mathrm{M}} \\
& K_{\mathrm{a}}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{F}^{-}\right]}{[\mathrm{HF}]}=\frac{(0.00920)(0.00920)}{0.241}=3.51 \times 10^{-4} \\
& \mathrm{p} K_{\mathrm{a}}=-\log \left(K_{\mathrm{a}}\right)=-\log \left(3.51 \times 10^{-4}\right)=3.455
\end{aligned}
$$

Calculating Equilibrium Concentrations of Weak Acids

Calculate the pH of a 0.10 M HCN solution. At $25^{\circ} \mathrm{C}, K_{\mathrm{a}}$ $=1.4 \times 10-9$.
$\mathrm{HCN}(a q)+\mathrm{H}_{2} \mathrm{O}(\Lambda) \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}(a q)+\mathrm{CN}^{-}(a q)$

0.10		≈ 0	0
		$+x$	$+x$
$0.10-x$		x	x

$$
K_{\mathrm{a}}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{CN}^{-}\right]}{[\mathrm{HCN}]}
$$

Calculating Equilibrium Concentrations of Weak Acids

$$
\begin{aligned}
& 4.9 \times 10^{-10}=\frac{(x)(x)}{(0.10-x)} \approx \frac{x^{2}}{0.10} \\
& x=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=7.0 \times 10^{-6} \mathrm{M} \\
& \mathrm{pH}=-\log \left(\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\right)=-\log \left(7.0 \times 10^{-6}\right)=5.15
\end{aligned}
$$

Step 1. List the species present before dissociation and identify them as Brønsted-Lowry acids or bases.

Step 2. Write balanced equations for all possible proton-transfer reactions.

Step 3. Identify the principal reaction-the reaction that has the largest equilibrium constant.

Step 4. Make a table that lists the following values for each of the species involved in the principal reaction:
(a) The initial concentration
(b) The change in concentration on proceeding to equilibrium
(c) The equilibrium concentration

In constructing this table, define x as the concentration $(\mathrm{mol} / \mathrm{L})$ of the acid that dissociates.

Step 5. Substitute the equilibrium concentrations into the equilibrium equation for the principal reaction, and solve for x.

Step 6. Calculate the "big" concentrations-the concentrations of the species involved in the principal reaction.

Step 7. Use the big concentrations and the equilibrium equations for the subsidiary reactions to calculate the small concentrations-the concentrations of the species involved in the subsidiary equilibria.

Step 8. Calculate the $\mathrm{pH}=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$.

Percent Dissociation in Solutions of Weak Acids

Percent dissociation $=\frac{[H A]_{\text {dissociated }}}{[H A]_{\text {nititial }}} \times 100 \%$

Polyprotic Acids

$$
\begin{gathered}
\left.\mathrm{H}_{2} \mathrm{CO}_{3}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\Lambda) \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{HCO}_{3}^{-}-\mathrm{aq}\right) \\
K_{\mathrm{a} 1}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{HCO}_{3}^{-}\right]}{\left[\mathrm{H}_{2} \mathrm{CO}_{3}\right]}=4.3 \times 10^{-7} \\
\mathrm{HCO}_{3}^{-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\Lambda) \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{CO}_{3}^{2-}(\mathrm{aq}) \\
K_{\mathrm{a} 2}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{CO}_{3}^{2-}\right]}{\left[\mathrm{HCO}_{3}^{-}\right]}=5.6 \times 10^{-11}
\end{gathered}
$$

Polyprotic Acids

TABLE 15.3 Stepwise Dissociation Constants for Polyprotic Acids at $25^{\circ} \mathrm{C}$

Name	Formula	$\boldsymbol{K}_{\mathrm{a} 1}$	$\boldsymbol{K}_{\mathrm{a} 2}$	$\boldsymbol{K}_{\mathrm{a} 3}$
Carbonic acid	$\mathrm{H}_{2} \mathrm{CO}_{3}$	4.3×10^{-7}	5.6×10^{-11}	
Hydrogen sulfide ${ }^{\mathrm{a}}$	$\mathrm{H}_{2} \mathrm{~S}$	1.0×10^{-7}	$\sim 10^{-19}$	
Oxalic acid	$\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$	5.9×10^{-2}	6.4×10^{-5}	
Phosphoric acid	$\mathrm{H}_{3} \mathrm{PO}_{4}$	7.5×10^{-3}	6.2×10^{-8}	4.8×10^{-13}
Sulfuric acid	$\mathrm{H}_{2} \mathrm{SO}_{4}$	Very large	1.2×10^{-2}	
Sulfurous acid	$\mathrm{H}_{2} \mathrm{SO}_{3}$	1.5×10^{-2}	6.3×10^{-8}	

${ }^{\text {a }}$ Because of its very small size, $K_{\mathrm{a} 2}$ for $\mathrm{H}_{2} \mathrm{~S}$ is difficult to measure and its value is uncertain.

Polyprotic Acids

Calculate the pH of a $0.020 \mathrm{M} \mathrm{H}_{2} \mathrm{CO}_{3}$ solution. At $25^{\circ} \mathrm{C}, K_{\mathrm{a} 1}=$ 4.3×10^{-7}.

$$
K_{\mathrm{a} 1}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{HCO}_{3}^{-}\right]}{\left[\mathrm{H}_{2} \mathrm{CO}_{3}\right]}
$$

Polyprotic Acids

$$
\begin{aligned}
& 4.3 \times 10^{-7}=\frac{(x)(x)}{(0.020-x)} \approx \frac{x^{2}}{0.020} \\
& x=\left[\mathrm{H}_{3} \mathrm{O}^{1+}\right]=9.3 \times 10^{-5} \mathrm{M} \\
& \mathrm{pH}=-\log \left(\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\right)=-\log \left(9.3 \times 10^{-5}\right)=4.03
\end{aligned}
$$

Equilibria in Solutions of Weak Bases

$$
\mathrm{B}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\Lambda) \rightleftharpoons \mathrm{BH}^{+}(a q)+\mathrm{OH}^{-}(\mathrm{aq})
$$

Base Acid Acid Base

Base Dissociation Constant: $K_{6} \quad\left[\mathrm{BH}^{+}\right]\left[\mathrm{OH}^{-}\right]$
 Base-Dissociation Constant: $K_{\mathrm{b}}=\frac{[B]}{}$

$\mathrm{NH}_{3}(a q)+\mathrm{H}_{2} \mathrm{O}(\Lambda) \rightleftharpoons \mathrm{NH}_{4}{ }^{+}(a q)+\mathrm{OH}^{-}(a q)$

$$
K_{\mathrm{b}}=\frac{\left[\mathrm{NH}_{4}^{+}\right]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{NH}_{3}\right]}
$$

Equilibria in Solutions of Weak Bases

TABLE $15.4 \quad K_{\mathrm{b}}$ Values for Some Weak Bases and K_{a} Values for Their Conjugate Acids at $25^{\circ} \mathrm{C}$

Base	Formula, \mathbf{B}	$\boldsymbol{K}_{\mathbf{b}}$	Conjugate Acid, $\mathbf{B H}^{+}$	$\boldsymbol{K}_{\mathbf{a}}$
Ammonia	NH_{3}	1.8×10^{-5}	NH_{4}^{+}	5.6×10^{-10}
Aniline	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}$	4.3×10^{-10}	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{3}{ }^{+}$	2.3×10^{-5}
Dimethylamine	$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}$	5.4×10^{-4}	$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}_{2}^{+}$	1.9×10^{-11}
Hydrazine	$\mathrm{N}_{2} \mathrm{H}_{4}$	8.9×10^{-7}	$\mathrm{~N}_{2} \mathrm{H}_{5}^{+}$	1.1×10^{-8}
Hydroxylamine	$\mathrm{NH}_{2} \mathrm{OH}$	9.1×10^{-9}	$\mathrm{NH}_{3} \mathrm{OH}^{+}$	1.1×10^{-6}
Methylamine	$\mathrm{CH}_{3} \mathrm{NH}_{2}$	3.7×10^{-4}	$\mathrm{CH}_{3} \mathrm{NH}_{3}{ }^{+}$	2.7×10^{-11}

Equilibria in Solutions of Weak Bases

Calculate the pH of a $0.40 \mathrm{M} \mathrm{NH}_{3}$ solution. At $25^{\circ} \mathrm{C}$, $K_{\mathrm{b}}=1.8 \times 10^{-5}$.
$\mathrm{NH}_{3}(a q)+\mathrm{H}_{2} \mathrm{O}(\Lambda) \rightleftharpoons \mathrm{NH}_{4}{ }^{+}(a q)+\mathrm{OH}^{-}(a q)$

0.40		0	≈ 0
		$+x$	$+x$
$0.40-x$		x	x

$$
K_{\mathrm{b}}=\frac{\left[\mathrm{NH}_{4}^{+}\right]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{NH}_{3}\right]}
$$

Equilibria in Solutions of Weak Bases

$$
1.8 \times 10^{-5}=\frac{(x)(x)}{(0.40-x)} \approx \frac{x^{2}}{0.40}
$$

$x=\left[\mathrm{OH}^{-}\right]=0.0027 \mathrm{M}$
$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\frac{1.0 \times 10^{-14}}{0.0027}=3.7 \times 10^{-12} \mathrm{M}$
$\mathrm{pH}=-\log \left(\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\right)=-\log \left(3.7 \times 10^{-12}\right)=11.43$

Relation Between K_{a} and K_{b}

$$
\begin{gathered}
\mathrm{NH}_{4}^{+}(a q)+\mathrm{H}_{2} \mathrm{O}\left(\Lambda \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}(a q)+\mathrm{NH}_{3}(a q) \quad K_{\mathrm{a}}\right. \\
\frac{\mathrm{NH}_{3}(a q)+\mathrm{H}_{2} \mathrm{O}\left(\Lambda \rightleftharpoons \mathrm{NH}_{4}^{+}(a q)+\mathrm{OH}^{-}(a q)\right.}{2 \mathrm{H}_{2} \mathrm{O}(\Lambda) \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}(a q)+\mathrm{OH}^{-}(a q)} \quad K_{\mathrm{w}} \\
K_{\mathrm{a}} \times K_{\mathrm{b}}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{NH} \mathrm{H}_{3}\right]}{\left[\mathrm{NH}_{4}^{+}\right]} \times \frac{\left[\mathrm{NH}_{4}^{+}\right]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{DH} H_{3}\right]}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right][\mathrm{OH}]=K_{\mathrm{w}} \\
=\left(5.6 \times 10^{-10}\right)\left(1.8 \times 10^{-5}\right)=1.0 \times 10^{-14}
\end{gathered}
$$

Relation Between K_{a} and K_{b}

$$
\underbrace{K_{\mathrm{a}} \times K_{\mathrm{b}}}=K_{\mathrm{w}}
$$

conjugate acid-base pair

$$
K_{\mathrm{a}}=\frac{K_{\mathrm{w}}}{K_{\mathrm{b}}} \quad K_{\mathrm{b}}=\frac{K_{\mathrm{w}}}{K_{\mathrm{a}}}
$$

$$
\mathrm{p} K_{\mathrm{a}}+\mathrm{p} K_{\mathrm{b}}=\mathrm{p} K_{\mathrm{w}}=14.00
$$

Acid-Base Properties of Salts

Salts That Yield Neutral Solutions

The following ions do not react appreciably with water to produce either $\mathrm{H}_{3} \mathrm{O}^{+}$or OH^{-}ions:

- Cations from strong bases:
- Alkali metal cations of group $1 \mathrm{a}\left(\mathrm{Li}^{+}, \mathrm{Na}^{+}, \mathrm{K}^{+}\right)$
- Alkaline earth metal cations of group 2a
$\left(\mathrm{Mg}^{2+}, \mathrm{Ca}^{2+}, \mathrm{Sr}^{2+}, \mathrm{Ba}^{2+}\right)$, except for Be^{2+}
- Anions from strong monoprotic acids:
- $\mathrm{Cl}^{-}, \mathrm{Br}^{-}, \mathrm{I}^{-}, \mathrm{NO}_{3}^{-}$, and ClO_{4}^{-}

Acid-Base Properties of Salts

Salts That Yield Acidic Solutions

Salts such as $\mathrm{NH}_{4} \mathrm{Cl}$ that are derived from a weak base $\left(\mathrm{NH}_{3}\right)$ and a strong acid (HCl) yield acidic solutions.

$$
\mathrm{NH}_{4}^{+}(a q)+\mathrm{H}_{2} \mathrm{O}(\Lambda) \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}(a q)+\mathrm{NH}_{3}(a q)
$$

Ammonium ion $\left(\mathrm{NH}_{4}+\right)$ is the conjugate acid of the weak base ammonia $\left(\mathrm{NH}_{3}\right)$ while chloride ion $\left(\mathrm{Cl}^{-}\right)$is neither acidic nor basic.

Acid-Base Properties of Salts

Salts That Yield Acidic Solutions

Hydrated cations of small, highly charged metal ions, such as Al^{3+}.

A regular octahedron has eight equilateral triangular faces and six vertices.

The six AI-O bonds point toward the six vertices of the octahedron.

A model of the $\mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}{ }^{3+}$ cation, showing the octahedral arrangement of bonds to the six $\mathrm{H}_{2} \mathrm{O}$ molecules.

Acid-Base Properties of Salts

Salts That Yield Acidic Solutions

Acid-Base Properties of Salts

Salts That Yield Basic Solutions

Salts such as NaCN that are derived from a strong base (NaOH) and a weak acid (HCN) yield basic solutions.

$$
\mathrm{CN}^{-}(a q)+\mathrm{H}_{2} \mathrm{O}\left(\Lambda \rightleftharpoons \mathrm{HCN}(a q)+\mathrm{OH}^{-}(a q)\right.
$$

Cyanide ion (CN^{-}) is the conjugate base of the weak acid hydrocyanic acid (HCN) while sodium ion (Na^{+}) is neither acidic nor basic.

Acid-Base Properties of Salts

Salts That Contain Acidic Cations and Basic Anions

The pH of an ammonium carbonate solution, $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}$, depends on the relative acid strength of the cation and the relative base strength of the anion.

Is it acidic or basic?

Acid-Base Properties of Salts

Salts That Contain Acidic Cations and Basic Anions
$\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}$:

$$
\begin{array}{ll}
\mathrm{NH}_{4}^{+}(a q)+\mathrm{H}_{2} \mathrm{O}(\Lambda) \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}(a q)+\mathrm{NH}_{3}(a q) & K_{\mathrm{a}} \\
\mathrm{CO}_{3}^{2-}(a q)+\mathrm{H}_{2} \mathrm{O}(\Lambda) \rightleftharpoons \mathrm{HCO}_{3}^{-}(a q)+\mathrm{OH}^{-}(a q) & K_{\mathrm{b}}
\end{array}
$$

Three possibilities:

- $K_{\mathrm{a}}>\boldsymbol{K}_{\mathrm{b}}$: The solution will contain an excess of $\mathrm{H}_{3} \mathrm{O}^{+}$ions ($\mathrm{pH}<7$).
- $K_{\mathrm{a}}<\boldsymbol{K}_{\mathrm{b}}$: The solution will contain an excess of OH^{-}ions ($\mathrm{pH}>7$).
- $K_{\mathrm{a}} \approx \boldsymbol{K}_{\mathrm{b}}$: The solution will contain approximately equal concentrations of $\mathrm{H}_{3} \mathrm{O}^{+}$and OH^{-}ions ($\mathrm{pH} \approx 7$).

Acid-Base Properties of Salts

Salts That Contain Acidic Cations and Basic Anions $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}$:

$$
\begin{array}{r}
\mathrm{NH}_{4}^{+}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\Lambda) \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{NH}_{3}(\mathrm{aq}) \\
\mathrm{CO}_{3}^{2-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}\left(\Lambda \rightleftharpoons \mathrm{KCO}_{\mathrm{a}}-(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})\right. \\
K_{\mathrm{b}} \\
K_{\mathrm{a}} \text { for } \mathrm{NH}_{4}^{+}=\frac{K_{\mathrm{w}}}{K_{\mathrm{b}} \text { for } \mathrm{NH}_{3}}=\frac{1.0 \times 10^{-14}}{1.8 \times 10^{-5}}=5.6 \times 10^{-10} \\
K_{\mathrm{b}} \text { for } \mathrm{CO}_{3}^{2-}=\frac{K_{\mathrm{w}}}{K_{\mathrm{a}} \text { for } \mathrm{HCO}_{3}^{-}}=\frac{1.0 \times 10^{-14}}{5.6 \times 10^{-111}}=1.8 \times 10^{-4} \\
\text { Basic, } K_{\mathrm{a}}<K_{\mathrm{b}}
\end{array}
$$

Acid-Base Properties of Salts

TABLE 15.5 Acid-Base Properties of Salts

Type of Salt	Examples	Ions That React with Water	pH of Solution
Cation from strong base; anion from strong acid	$\mathrm{NaCl}, \mathrm{KNO}_{3}, \mathrm{BaI}_{2}$	None	~ 7
Cation from weak base; anion from strong acid	$\mathrm{NH}_{4} \mathrm{Cl}, \mathrm{NH}_{4} \mathrm{NO}_{3}$, $\left[\left(\mathrm{CH}_{3}\right)_{3} \mathrm{NH}\right] \mathrm{Cl}$	Cation	<7
Small, highly charged, cation; anion from strong acid	$\begin{gathered} \mathrm{AlCl}_{3}, \mathrm{Cr}\left(\mathrm{NO}_{3}\right)_{3}, \\ \mathrm{Fe}\left(\mathrm{ClO}_{4}\right)_{3} \end{gathered}$	Hydrated cation	<7
Cation from strong base; anion from weak acid	$\mathrm{NaCN}, \mathrm{KF}, \mathrm{Na}_{2} \mathrm{CO}_{3}$	Anion	>7
Cation from weak base; anion from weak acid	$\begin{gathered} \mathrm{NH}_{4} \mathrm{CN}, \mathrm{NH}_{4} \mathrm{~F}, \\ \left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3} \end{gathered}$	Cation and anion	$\begin{aligned} & <7 \text { if } K_{\mathrm{a}}>K_{\mathrm{b}} \\ & >7 \text { if } K_{\mathrm{a}}<K_{\mathrm{b}} \\ & \sim 7 \text { if } K_{\mathrm{a}} \approx K_{\mathrm{b}} \end{aligned}$

Lewis Acids and Bases

Lewis Acid: An electron-pair acceptor
Lewis Base: An electron-pair donor

Lewis Acids and Bases

Lewis Acids and Bases

Sulfuric acid

