

Lecture Presentation

Chapter 15

Aqueous Equilibria: Acids and Bases

John E. McMurry Robert C. Fay

Acid-Base Concepts: The Brønsted-Lowry Theory

Arrhenius Acid: A substance that dissociates in water to produce hydrogen ions, H⁺

$$HA(aq) \rightleftharpoons H^+(aq) + A^-(aq)$$

Arrhenius Base: A substance that dissociates in water to produce hydroxide ions, OH⁻

$$MOH(aq) \rightleftharpoons M^{+}(aq) + OH^{-}(aq)$$

Acid-Base Concepts: The Brønsted-Lowry Theory

Brønsted-Lowry Acid: A substance that can transfer hydrogen ions, H⁺. In other words, a proton donor

Brønsted-Lowry Base: A substance that can accept hydrogen ions, H⁺. In other words, a proton acceptor

Conjugate Acid-Base Pairs: Chemical species whose formulas differ only by one hydrogen ion, H⁺

Acid-Base Concepts: The Brønsted-Lowry Theory

Acid-Dissociation Equilibrium

Acid-Base Concepts: The Brønsted-Lowry Theory

Base-Dissociation Equilibrium

Acid Strength and Base Strength

$$HA(aq) + H_2O(I) \rightleftharpoons H_3O^+(aq) + A^-(aq)$$
Acid Base Acid Base

With equal concentrations of reactants and products, what will be the direction of reaction?

Stronger acid + Stronger base → Weaker acid + Weaker base

Acid Strength and Base Strength

Weak Acid: An acid that is only partially dissociated in water and is thus a weak electrolyte

Acid Strength and Base Strength

TABLE 15.1	BLE 15.1 Relative Strengths of Conjugate Acid-Base Pairs			
	Acid, HA	Base, A		
Stronger acid	$\begin{array}{c} \text{HClO}_4 \\ \text{HCl} \\ \text{H}_2\text{SO}_4 \\ \text{HNO}_3 \end{array} \hspace{0.2cm} \begin{array}{c} \text{Strong acids:} \\ 100\% \text{ dissociated} \\ \text{in aqueous} \\ \text{solution.} \end{array}$	ClO ₄ ⁻ Cl ⁻ Negligible tendency to be protonated in aqueous solution.	Weaker base	
	H_3O^+ $HSO_4^ H_3PO_4$ HNO_2	$ \begin{array}{c} H_2O \\ SO_4^{2-} \\ H_2PO_4^{-} \\ NO_2^{-} \end{array} $		
	HF CH ₃ CO ₂ H Exist in solution as a mixture of H ₂ S NH ₄ ⁺ HCN HCO ₃ HCO ₃ Weak acids: Exist in solution as a mixture of HA, A ⁻ , and H ₃ O ⁺ .	F- CH ₃ CO ₂ - HCO ₃ - HS- NH ₃ CN- CO ₃ ² - Weak bases: Moderate tendency to be protonated in aqueous solution.		
Weaker acid	H_2O NH_3 $OH^ H_2$ Very weak acids: Negligible tendency to dissociate.	$OH^ NH_2^ O^{2^-}$ $H^ Strong bases:$ $100\% protonated in aqueous solution.$	Stronger base	

Hydrated Protons and Hydronium Ions

$$HA(aq) \rightleftharpoons H^+(aq) + A^-(aq)$$

Due to high reactivity of the hydrogen ion, it is actually hydrated by one or more water molecules.

[H(H₂O)_n]⁺
$$\begin{cases} n = 1 & \text{H}_3\text{O}^+ \\ n = 2 & \text{H}_5\text{O}_2^+ \\ n = 3 & \text{H}_7\text{O}_3^+ \\ n = 4 & \text{H}_9\text{O}_4^+ \end{cases}$$

For our purposes, H⁺ is equivalent to H₃O⁺.

Bond Polarity

570 432 366 298

H-A bond strength (kJ/mol)

2.5

Oxoacids

H-O-I < H-O-Br < H-O-CI

Electronegativity of Y

2.8

3.0

Electronegativity of Y

Oxoacids

Dissociation of Water: $2 H_2O(l) \rightleftharpoons H_3O^+(aq) + OH^-(aq)$

Ion-Product Constant for Water: $K_w = [H_3O^+][OH^-]$

at 25 °C:
$$[H_3O^+] = [OH^-] = 1.0 \times 10^{-7} M$$

$$K_{w} = (1.0 \times 10^{-7})(1.0 \times 10^{-7}) = 1.0 \times 10^{-14}$$

$$K_{\rm w} = [H_3O^+][OH-] = 1.0 \times 10^{-14}$$

$$[H_3O^+] = \frac{1.0 \times 10^{-14}}{[OH-]}$$

$$[OH^-] = \frac{1.0 \times 10^{-14}}{[H_3O^+]}$$

Acidic:
$$[H_3O^+] > [OH^-]$$

Neutral:
$$[H_3O^+] = [OH^-]$$

Basic:
$$[H_3O^+] < [OH^-]$$

$$pH = -log[H_3O^+]$$
 $[H_3O^+] = 10^{-pH}$

Acidic: pH < 7

Neutral: pH = 7

Basic: pH > 7

The hydronium ion concentration for lemon juice is approximately 0.0025 M. What is the pH when $[H_3O^+] = 0.0025 M$?

Calculate the pH of an aqueous ammonia solution that has an OH⁻ concentration of 0.0019 M.

$$[H_3O^+] = \frac{1.0 \times 10^{-14}}{[OH^1-]} = \frac{1.0 \times 10^{-14}}{0.0019} = 5.3 \times 10^{-12} \text{ M}$$

$$pH = -log(5.3 \times 10^{-12}) = 11.28$$

Acid rain is a matter of serious concern because most species of fish die in waters having a pH lower than 4.5–5.0. Calculate [H₃O⁺] in a lake that has a pH of 4.5.

$$[H_3O^+] = 10^{-4.5} = 3 \times 10^{-5} M$$

Measuring pH

Acid–Base Indicator: A substance that changes color in a specific pH range. Indicators exhibit pH-dependent color changes because they are weak acids and have different colors in their acid (HIn) and conjugate base (In⁻) forms.

$$HIn(aq) + H_2O(I) \Longrightarrow H_3O^+(aq) + In^-(aq)$$
Color A
Color B

Measuring pH

The pH in Solutions of Strong Acids and Strong Bases

What is the pH of a 0.025 M solution of HNO₃?

$$HNO_3(aq) + H_2O(I) \xrightarrow{100\%} H_3O^+(aq) + NO_3^-(aq)$$

Since HNO_3 is a strong acid, $[H_3O^+] = [HNO_3]$.

$$pH = -log([H_3O^+]) = -log(0.025) = 1.60$$

The pH in Solutions of Strong Acids and Strong Bases

What is the pH of a 0.025 M solution of NaOH?

$$NaOH(aq) \longrightarrow Na^{+}(aq) + OH^{-}(aq)$$

Since NaOH is a strong base, [OH-] = [NaOH].

$$[H_3O^+] = \frac{1.0 \times 10^{-14}}{[OH^-]} = \frac{1.0 \times 10^{-14}}{0.025} = 4.0 \times 10^{-13} \text{ M}$$

$$pH = -log([H_3O^+]) = -log(4.0 \times 10^{-13}) = 12.40$$

Equilibria in Solutions of Weak Acids

$$HA(aq) + H_2O(l) \rightleftharpoons H_3O^+(aq) + A^-(aq)$$

Acid-Dissociation Constant:
$$K_a = \frac{[H_3O^+][A^-]}{[HA]}$$

TABLE 15.2 Acid-Dissociation Constants at 25 °C

	Acid	Molecular Formula	Structural Formula*	$K_{\mathbf{a}}$	pK_a^{\dagger}
Stronger	Hydrochloric	HCl	H—Cl	2×10^6	-6.3
acid	Nitrous	HNO_2	$\mathbf{H} - \mathbf{O} - \mathbf{N} = \mathbf{O}$	4.5×10^{-4}	3.35
	Hydrofluoric	HF	H—F	3.5×10^{-4}	3.46
			O 		
	Formic	HCO ₂ H	$H-\ddot{C}-O-H$	1.8×10^{-4}	3.74
			HO		
	Ascorbic (vitamin C)	$C_6H_8O_6$		8.0×10^{-5}	4.10
			HO H CH—CH ₂ OH		
			OH		
			O		
	Acetic	CH ₃ CO ₂ H	$CH_3 - \ddot{C} - O - \mathbf{H}$	1.8×10^{-5}	4.74
	Hypochlorous	HOCl	H-O-Cl	3.5×10^{-8}	7.46
Weaker	Hydrocyanic	HCN	$\mathbf{H} - \mathbf{C} = \mathbf{N}$	4.9×10^{-10}	9.31
acid	Methanol	CH₃OH	CH ₃ —O— H	2.9×10^{-16}	15.54

^{*} The proton that is transferred to water when the acid dissociates is shown in red. † $pK_a = -\log K_a$.

Equilibria in Solutions of Weak Acids

The pH of 0.250 M HF is 2.036. What are the values of K_a and p K_a for hydrofluoric acid?

$$HF(aq) + H_2O(l) \Longrightarrow H_3O^+(aq) + F^-(aq)$$

0.250	≈0	0
-X	+ <i>X</i>	+X
0.250 – x	X	X

$$x = [H_3O^+] = 10^{-2.036} = 0.00920 \text{ M}$$

Equilibria in Solutions of Weak Acids

$$K_{a} = \frac{[H_{3}O^{+}][F^{-}]}{[HF]}$$

$$[F^-] = [H_3O^+] = 0.00920 \text{ M}$$

$$[HF] = 0.250 - x = 0.250 - 0.00920 = 0.241 M$$

$$K_{a} = \frac{[H_{3}O^{+}][F^{-}]}{[HF]} = \frac{(0.00920)(0.00920)}{0.241} = \boxed{3.51 \times 10^{-4}}$$

$$pK_a = -\log(K_a) = -\log(3.51 \times 10^{-4}) = 3.455$$

Calculating Equilibrium Concentrations of Weak Acids

Calculate the pH of a 0.10 M HCN solution. At 25 °C, K_a = 1.4 × 10–9.

$$HCN(aq) + H_2O(l) \rightleftharpoons H_3O^+(aq) + CN^-(aq)$$

0.10	≈0	0
-X	+ <i>X</i>	+ <i>X</i>
0.10 – <i>x</i>	X	X

$$K_{a} = \frac{[H_{3}O^{+}][CN^{-}]}{[HCN]}$$

Calculating Equilibrium Concentrations of Weak Acids

$$4.9 \times 10^{-10} = \frac{(x)(x)}{(0.10 - x)} \approx \frac{x^2}{0.10}$$

$$x = [H_3O^+] = 7.0 \times 10^{-6} \text{ M}$$

pH =
$$-\log([H_3O^+]) = -\log(7.0 \times 10^{-6}) = (5.15)$$

Percent Dissociation in Solutions of Weak Acids

Percent dissociation =
$$\frac{[HA]_{dissociated}}{[HA]_{initial}} \times 100\%$$

Polyprotic Acids

$$H_2CO_3(aq) + H_2O(I) \rightleftharpoons H_3O^+(aq) + HCO_3^-(aq)$$

$$K_{a1} = \frac{[H_3O^+][HCO_3^-]}{[H_2CO_3]} = 4.3 \times 10^{-7}$$

$$HCO_3^-(aq) + H_2O(l) \Longrightarrow H_3O^+(aq) + CO_3^{2-}(aq)$$

$$K_{a2} = \frac{[H_3O^+][CO_3^{2-}]}{[HCO_3^-]} = 5.6 \times 10^{-11}$$

Polyprotic Acids

TABLE 15.3 Stepwise Dissociation Constants for Polyprotic Acids at 25 °C

Name	Formula	K_{a1}	K_{a2}	K_{a3}
Carbonic acid	H_2CO_3	4.3×10^{-7}	5.6×10^{-11}	
Hydrogen sulfide ^a	H_2S	1.0×10^{-7}	$\sim 10^{-19}$	
Oxalic acid	$H_2C_2O_4$	5.9×10^{-2}	6.4×10^{-5}	
Phosphoric acid	H_3PO_4	7.5×10^{-3}	6.2×10^{-8}	4.8×10^{-13}
Sulfuric acid	H_2SO_4	Very large	1.2×10^{-2}	
Sulfurous acid	H_2SO_3	1.5×10^{-2}	6.3×10^{-8}	

^aBecause of its very small size, K_{a2} for H_2S is difficult to measure and its value is uncertain.

Polyprotic Acids

Calculate the pH of a 0.020 M H_2CO_3 solution. At 25 °C, $K_{a1} = 4.3 \times 10^{-7}$.

$$H_2CO_3(aq) + H_2O(l) \Longrightarrow H_3O^+(aq) + HCO_3^-(aq)$$

0.020	≈0	0
-X	+ <i>X</i>	+ <i>X</i>
0. 20 <i>- x</i>	X	X

$$K_{a1} = \frac{[H_3O^+][HCO_3^-]}{[H_2CO_3]}$$

Polyprotic Acids

4.3 × 10⁻⁷ =
$$\frac{(x)(x)}{(0.020 - x)} \approx \frac{x^2}{0.020}$$

$$x = [H_3O^{1+}] = 9.3 \times 10^{-5} \text{ M}$$

pH =-log([H₃O⁺]) = -log(9.3 × 10⁻⁵) =
$$(4.03)$$

$$B(aq) + H_2O(I) \rightleftharpoons BH^+(aq) + OH^-(aq)$$

Base Acid

Acid

Base

Base-Dissociation Constant:
$$K_b = \frac{[BH^+][OH^-]}{[B]}$$

$$NH_3(aq) + H_2O(I) \rightleftharpoons NH_4^+(aq) + OH^-(aq)$$

$$K_{b} = \frac{[NH_{4}^{+}][OH^{-}]}{[NH_{3}]}$$

TABLE 15.4 K_b Values for Some Weak Bases and K_a Values for Their Conjugate Acids at 25 °C

Base	Formula, B	K_{b}	Conjugate Acid, BH ⁺	K _a
Ammonia	NH ₃	1.8×10^{-5}	$\mathrm{NH_4}^+$	5.6×10^{-10}
Aniline	$C_6H_5NH_2$	4.3×10^{-10}	$C_6H_5NH_3^+$	2.3×10^{-5}
Dimethylamine	$(CH_3)_2NH$	5.4×10^{-4}	$(CH_3)_2NH_2^+$	1.9×10^{-11}
Hydrazine	N_2H_4	8.9×10^{-7}	$N_2H_5^+$	1.1×10^{-8}
Hydroxylamine	NH ₂ OH	9.1×10^{-9}	NH ₃ OH ⁺	1.1×10^{-6}
Methylamine	CH ₃ NH ₂	3.7×10^{-4}	CH ₃ NH ₃ ⁺	2.7×10^{-11}

Calculate the pH of a 0.40 M NH₃ solution. At 25 °C, $K_b = 1.8 \times 10^{-5}$.

$$NH_3(aq) + H_2O(l) \Longrightarrow NH_4^+(aq) + OH^-(aq)$$

0.40	0	≈0
-X	+ <i>X</i>	+ <i>X</i>
0.40 <i>- x</i>	X	X

$$K_{b} = \frac{[NH_{4}^{+}][OH^{-}]}{[NH_{3}]}$$

$$1.8 \times 10^{-5} = \frac{(x)(x)}{(0.40 - x)} \approx \frac{x^2}{0.40}$$

$$x = [OH^{-}] = 0.0027 \text{ M}$$

$$[H_3O^+] = \frac{1.0 \times 10^{-14}}{0.0027} = 3.7 \times 10^{-12} \text{ M}$$

pH =
$$-\log([H_3O^+]) = -\log(3.7 \times 10^{-12}) = 11.43$$

Relation Between K_a and K_b

$$NH_{4}^{+}(aq) + H_{2}O(I) \rightleftharpoons H_{3}O^{+}(aq) + NH_{3}(aq) \qquad K_{a}$$

$$NH_{3}(aq) + H_{2}O(I) \rightleftharpoons NH_{4}^{+}(aq) + OH^{-}(aq) \qquad K_{b}$$

$$2 H_{2}O(I) \rightleftharpoons H_{3}O^{+}(aq) + OH^{-}(aq) \qquad K_{w}$$

$$K_{\rm a} \times K_{\rm b} = \frac{[{\rm H}_3{\rm O}^+][{\rm NH}_3]}{[{\rm NH}_4^+]} \times \frac{[{\rm NH}_4^+][{\rm OH}^-]}{[{\rm NH}_3]} = [{\rm H}_3{\rm O}^+][{\rm OH}^-] = K_{\rm w}$$

= $(5.6 \times 10^{-10})(1.8 \times 10^{-5}) = 1.0 \times 10^{-14}$

Relation Between K_a and K_b

$$K_a \times K_b = K_w$$

conjugate acid-base pair

$$K_{a} = \frac{K_{w}}{K_{b}}$$
 $K_{b} = \frac{K_{w}}{K_{a}}$

$$pK_a + pK_b = pK_w = 14.00$$

Salts That Yield Neutral Solutions

The following ions do not react appreciably with water to produce either H₃O⁺ or OH⁻ ions:

- Cations from strong bases:
 - Alkali metal cations of group 1a (Li+, Na+, K+)
 - Alkaline earth metal cations of group 2a (Mg²⁺, Ca²⁺, Sr²⁺, Ba²⁺), except for Be²⁺
- Anions from strong monoprotic acids:
 - Cl⁻, Br⁻, l⁻, NO₃⁻, and ClO₄⁻

Salts That Yield Acidic Solutions

Salts such as NH₄Cl that are derived from a weak base (NH₃) and a strong acid (HCl) yield acidic solutions.

$$NH_4^+(aq) + H_2O(l) \rightleftharpoons H_3O^+(aq) + NH_3(aq)$$

Ammonium ion (NH₄+) is the conjugate acid of the weak base ammonia (NH₃) while chloride ion (Cl⁻) is neither acidic nor basic.

Salts That Yield Acidic Solutions

Hydrated cations of small, highly charged metal ions, such as Al³⁺.

A regular octahedron has eight equilateral triangular faces and six vertices.

The six Al–O bonds point toward the six vertices of the octahedron.

A model of the $Al(H_2O)_6^{3+}$ cation, showing the octahedral arrangement of bonds to the six H_2O molecules.

Salts That Yield Acidic Solutions

Salts That Yield Basic Solutions

Salts such as NaCN that are derived from a strong base (NaOH) and a weak acid (HCN) yield basic solutions.

$$CN^{-}(aq) + H_2O(l) \Longrightarrow HCN(aq) + OH^{-}(aq)$$

Cyanide ion (CN⁻) is the conjugate base of the weak acid hydrocyanic acid (HCN) while sodium ion (Na⁺) is neither acidic nor basic.

Salts That Contain Acidic Cations and Basic Anions

The pH of an ammonium carbonate solution, $(NH_4)_2CO_3$, depends on the relative acid strength of the cation and the relative base strength of the anion.

Is it acidic or basic?

Salts That Contain Acidic Cations and Basic Anions $(NH_4)_2CO_3$:

$$NH_4^+(aq) + H_2O(I) \rightleftharpoons H_3O^+(aq) + NH_3(aq)$$
 K_a
 $CO_3^{2-}(aq) + H_2O(I) \rightleftharpoons HCO_3^-(aq) + OH^-(aq)$
 K_b

Three possibilities:

- K_a > K_b: The solution will contain an excess of H₃O⁺ ions (pH < 7).
- K_a < K_b: The solution will contain an excess of OH⁻ ions (pH > 7).
- K_a ≈ K_b: The solution will contain approximately equal concentrations of H₃O⁺ and OH⁻ ions (pH ≈ 7).

Salts That Contain Acidic Cations and Basic Anions $(NH_4)_2CO_3$:

$$NH_4^+(aq) + H_2O(I) \rightleftharpoons H_3O^+(aq) + NH_3(aq)$$
 K_a

$$CO_3^{2-}(aq) + H_2O(I) \rightleftharpoons HCO_3^{-}(aq) + OH^{-}(aq)$$
 K_b

$$K_{\rm a}$$
 for NH₄⁺ = $\frac{K_{\rm w}}{K_{\rm b}$ for NH₃ = $\frac{1.0 \times 10^{-14}}{1.8 \times 10^{-5}}$ = 5.6 × 10⁻¹⁰

$$K_b$$
 for $CO_3^{2-} = \frac{K_w}{K_a}$ for $HCO_3^{-} = \frac{1.0 \times 10^{-14}}{5.6 \times 10^{-11}} = 1.8 \times 10^{-4}$

Basic, $K_a < K_b$

TABLE 15.5 Acid-Base Properties of Salts

Type of Salt	Examples	Ions That React with Water	pH of Solution
Cation from strong base; anion from strong acid	NaCl, KNO ₃ , BaI ₂	None	~7
Cation from weak base; anion from strong acid	NH_4Cl , NH_4NO_3 , $[(CH_3)_3NH]Cl$	Cation	<7
Small, highly charged, cation; anion from strong acid	AlCl ₃ , $Cr(NO_3)_3$, Fe(ClO ₄) ₃	Hydrated cation	<7
Cation from strong base; anion from weak acid	NaCN, KF, Na ₂ CO ₃	Anion	>7
Cation from weak base; anion from weak acid	NH_4CN , NH_4F , $(NH_4)_2CO_3$	Cation and anion	$<7 \text{ if } K_a > K_b$ >7 \text{ if } K_a < K_b ~7 \text{ if } K_a \approx K_b

Lewis Acids and Bases

Lewis Acid: An electron-pair acceptor

Lewis Base: An electron-pair donor

Lewis Acids and Bases

Lewis acid Lewis base

- (a) Light blue Cu²⁺(aq)
- **(b)** Addition of $NH_3(aq)$ to (a) gives a light blue precipitate of $Cu(OH)_2$.
- (c) Addition of excess $NH_3(aq)$ to **(a)** or **(b)** yields the deep blue $Cu(NH_3)_4^{2+}$ ion.

Lewis Acids and Bases