

Lecture Presentation

Chapter 1 Chemical Tools: Experimentation and Measurement

HW in textbook for no points on your own: 1.1, 1.3, 1.5, 1.7, 1.15, 1.17, 1.28, 1.58, 1.66, 1.76, 1.82, 1.100 (answers in the back of the book)

John E. McMurry Robert C. Fay

The Scientific Method

- Observations
- Recording qualitative or quantitative data
- Hypothesis
- Explanation of observations
- Experiments
- Change one variable at a time
- Test hypothesis
- Theory
- Explains experiment
- Predicts further outcome

Scientific Method Example

Observation: Alzheimers is slowed in some people who smoke.
Hypothesis: A substance in cigarette smoke somehow slows Alzheimers in some people. (but increases heart attack, cancer risks)

Experiment: change variable one at a time -Isolate and identify each component chemicals in cigarette smoke. -Give each individual component to mice and look for result. (example: test nicotine effect on Alzheimers)
-Change the molecular structure of cigarette smoke components \& look for slowing Alheimers wo increasing heart attack \& cancer.

Theory (my speculation) There is a receptor in people with Alzheimers which is blocked by the new molecule analog of component of cigarette smoke. (nicotine is similar in structure to cocaine so not surprising that it would have neurobiological effects)

Experimentation and Measurement

Système Internationale d'Unités

TABLE 1.1 The Seven Fundamental SI Units of Measure

Physical Quantity	Name of Unit	Abbreviation
Mass	kilogram	kg
Length	meter	m
Temperature	kelvin	K
Amount of substance	mole	mol
Time	second	s
Electric current	ampere	A

All other units are derived from these fundamental units.
Dept. Memorize List: * Not responsible for memorizing (some of this on periodic table card available on quizzes \& exams)

TABLE 1.2 Some Prefixes for Multiples of SI Units. The most commonly used prefixes are shown in red.

Factor	Prefix	Symbol	Example
$1,000,000,000,000=10^{12}$	tera	T	1 teragram $(\mathrm{Tg})=10^{12} \mathrm{~g}$
$1,000,000,000=10^{9}$	giga	G	1 gigameter $(\mathrm{Gm})=10^{9} \mathrm{~m}$
$1,000,000=10^{6}$	mega	M	1 megameter $(\mathrm{Mm})=10^{6} \mathrm{~m}$
$1000=10^{3}$	kilo	k	1 kilogram $(\mathrm{kg})=10^{3} \mathrm{~g}$
$100=10^{2}$	hecto	h	1 hectogram $(\mathrm{hg})=100 \mathrm{~g}$
$10=10^{1}$	deka	da	1 dekagram $(\mathrm{dag})=10 \mathrm{~g}$
		d	
$0.1=10^{-1}$	deci	c	1 decimeter $(\mathrm{dm})=0.1 \mathrm{~m}$
$0.01=10^{-2}$	centi	m	1 centimeter $(\mathrm{cm})=0.01 \mathrm{~m}$
$0.001=10^{-3}$	milli	μ	1 milligram $(\mathrm{mg})=0.001 \mathrm{~g}$
${ }^{*} 0.000001=10^{-6}$	micro	n	1 micrometer $(\mu \mathrm{m})=10^{-6} \mathrm{~m}$
${ }^{-6} 0.000000001=10^{-9}$	nano	p	1 nanosecond $(\mathrm{ns})=10^{-9} \mathrm{~s}$
${ }^{*} 0.000000000001=10^{-12}$	pico	femto	1 picosecond $(\mathrm{ps})=10^{-12} \mathrm{~s}$
${ }^{*} 0.000000000000001=10^{-15}$		1 femtomole $(\mathrm{fmol})=10^{-15} \mathrm{~mol}$	

*For very small numbers, it is becoming common in scientific work to leave a thin space every three digits to the right of the decimal point, analogous to the comma placed every three digits to the left of the decimal point in large numbers.

Dept. Memorize List: Memorize those in red (could put on your index card)

Example: conversions \& scientific notation

1. Write the following in scientific notation. (x.xx * 10^{x})
a. 0.000027809
b. 9230734.2
2. Convert 2.789×10^{7} meters to kilometers
(10^{3} meter $=1$ kilometers)

HW: conversions \& scientific notation

 (Appendix A in textbook p. A-1)1. Write the following in scientific notation.
a. 4208090.024
b. 0.07130634

8/30 F
2. Convert 7.2308×10^{2} liters to milliliters
$\left(10^{-3} \mathrm{~L}=1 \mathrm{~mL}\right)$

Mass and Its Measurement

Mass: Amount of matter in an object

Weight: Measures the force with which gravity pulls on an object

Temperature and Its Measurement easiest type of problem: plug into equation

$$
\begin{aligned}
& { }^{\circ} \mathrm{F}=\left(\frac{9}{5}\right){ }^{\circ} \mathrm{C}+32{ }^{\circ} \mathrm{F} \\
& { }^{\circ} \mathrm{C}=\left(\frac{5}{9}\right)\left({ }^{\circ} \mathrm{F}-32{ }^{\circ} \mathrm{F}\right) \\
& \mathrm{K}={ }^{\circ} \mathrm{C}+273.15
\end{aligned}
$$

Watch those parenthesis in doing math (32 has an infinite \# of sig figs while 273.15 only has as many sig figs as shown)

Will need equation - could put on your index card

Temperature and Its Measurement

Convert $25.2{ }^{\circ} \mathrm{C}$ to ${ }^{\circ} \mathrm{F}$

$$
{ }^{\circ} \mathrm{F}=\left(\frac{9}{5}\right){ }^{\circ} \mathrm{C}+32 \quad{ }^{\circ} \mathrm{F}=\left(\frac{9}{5}\right) 25.2^{\circ} \mathrm{C}+32=77.4
$$

Convert $82.5^{\circ} \mathrm{F}$ to ${ }^{\circ} \mathrm{C} \quad \mathrm{HW}$

$$
{ }^{\circ} \mathrm{C}=\left(\frac{5}{9}\right)\left({ }^{\circ} \mathrm{F}-32^{\circ} \mathrm{F}\right)
$$

Convert $32.5^{\circ} \mathrm{C}$ to $\mathrm{K} \quad \mathrm{HW}$

$$
\mathrm{K}={ }^{\circ} \mathrm{C}+273.15
$$

End
8/30 G

Each cubic meter contains 1000 cubic decimeters (liters).

$$
\begin{aligned}
& 1 \mathrm{~m}=10 \mathrm{dm} \\
& 1 \mathrm{dm}=10 \mathrm{~cm}
\end{aligned} \quad \begin{aligned}
1 \mathrm{~m}^{3} & =1000 \mathrm{dm}^{3}=10^{3} \mathrm{dm}^{3} \\
1 \mathrm{dm}^{3} & =1 \mathrm{~L} \\
& =1000 \mathrm{~cm}^{3}=10^{3} \mathrm{~cm}^{3} \\
1 \mathrm{~cm}^{3} & =1 \mathrm{~mL}
\end{aligned}
$$

1 dm

$1 \mathrm{dm}^{3}$
Each cubic decimeter contains 1000 cubic centimeters (milliliters).

Derived Units: Volume and Its Measurement

TABLE 1.3 Some Derived Quantities

Quantity	Definition	Derived Unit (Name)
Area	Length times length	m^{2}
Volume	Area times length	m^{3}
Density	Mass per unit volume	$\mathrm{kg} / \mathrm{m}^{3}{\mathrm{more} \mathrm{often} \mathrm{g} / \mathrm{cm}^{3}}^{\text {Speed }}$
Acceleration	Distance per unit time	m / s
Force	Change in speed per unit time	$\mathrm{m} / \mathrm{s}^{2}$
Pressure	Mass times acceleration	$(\mathrm{kg} \cdot \mathrm{m}) / \mathrm{s}^{2}($ newton, N$)$
Energy	Force per unit area	$\mathrm{kg} /\left(\mathrm{m} \cdot \mathrm{s}^{2}\right)($ pascal, Pa)
	Force times distance	$\left(\mathrm{kg} \cdot \mathrm{m}^{2}\right) / \mathrm{s}^{2}(\mathrm{joule}, \mathrm{J})$

On list of memorization: I normally don't make people memorize this. May need at final exam.

Derived Units: Volume and Its Measurement

Derived Units: Density and Its Measurement

TABLE 1.4 Densities of Some Common Materials

Substance	Density $\left(\mathrm{g} / \mathrm{cm}^{3}\right)$
Ice $\left(0^{\circ} \mathrm{C}\right)$	0.917
Water $\left(3.98^{\circ} \mathrm{C}\right)$	1.0000
Gold	19.31
Helium $\left(25^{\circ} \mathrm{C}\right)$	0.000164
Air $\left(25^{\circ} \mathrm{C}\right)$	0.001185
Human fat	0.94
Human muscle	1.06
Cork	$0.22-0.26$
Balsa wood	0.12
Earth	5.54

Typical volume units $\left\{\begin{array}{l}\text { Solids: } \mathrm{cm}^{3} \\ \text { Liquids: } \mathrm{mL} \\ \text { Gases: } \mathrm{L}\end{array} \quad\right.$ Density $=\frac{\text { Mass }}{\text { Volume }}$

Using Density as a conversion factor (d = mass/volume)

Density of pure water at room temperature is $1.00 \mathrm{~g} / \mathrm{mL}$. If I have 250.1 mL of water, how much does it weigh ?
$250.1 \mathrm{~mL} * 1.00 \mathrm{~g}=250.1$ grams mL

Calculations: Converting from One Unit

 to AnotherDimensional Analysis: A method that uses a conversion factor to convert a quantity expressed in one unit to an equivalent quantity in a different unit

Conversion Factor: Expresses the relationship between two different units

Original quantity \times Conversion factor $=$ Equivalent quantity

Dimensional Analysis: Problem-Solving Strategy - Converting from One Unit to Another

- Can multiply by "one" as many times as you want.
- If (a) is equivalent to (b), then "one" = (a) / (b) OR "one" = (b) / (a). ($2.45 \mathrm{~cm}=1$ inch, conversion factor is either $2.45 \mathrm{~cm} / 1$ inch OR 1 inch $/ 2.45 \mathrm{~cm}$)
- Anything in the numerator cancels the same thing in the denominator.
- Always keep the unit of all numbers to help dimensional analysis

Calculations: Converting from One Unit to Another

Relationship: $1 \mathrm{~m}=39.37 \mathrm{in}$.

Conversion Factor: $\frac{1 \mathrm{~m}}{39.37 \mathrm{in} .}$ or $\frac{39.37 \mathrm{in} .}{1 \mathrm{~m}}$

Converts
in. to m

Calculations: Converting from One Unit to Another

69.5 in. $\times \frac{1 \mathrm{~m}}{39.37 \mathrm{~m} .}=1.77 \mathrm{~m}$
Starting quantity
Equivalent quantity
Conversion factor

Dimensional Analysis

- A student has entered a 10.0-km run
- How long is the run in miles?
- equivalence statements:

$$
\begin{aligned}
& 1 \mathrm{~km}=1000 \mathrm{~m} \\
& 1 \mathrm{~m}=1.094 \mathrm{yd} \\
& 1760 \mathrm{yd}=1 \mathrm{mi}
\end{aligned}
$$

Dimensional Analysis:

- 1760 is an exact number
- Since the distance was originally given as 10.0 km , the result can have only three significant figures and should be rounded to 6.22 mi

HW: Dimensional Analysis

The average speed on S. Broad Street is 45.2 miles per hour. What is the speed in cm / second? Use the conversion factors listed below. (end D, F 9/2/19 M) (G section completed HW)

1 mile $=5280$ feet
1 foot $=12$ inches
1 inches $=2.54 \mathrm{~cm}$
1 hour $=60$ minutes
1 minute $=60$ seconds

FOLLOWING SLIDES ARE TO BE COVERED IN LAB CLASS

Accuracy, Precision, and Significant Figures in Measurement

Accuracy: How close to the true value a given measurement is

Precision: How well a number of independent measurements agree with each other

Accuracy, Precision, and Significant Figures in Measurement

Mass of a Tennis Ball
(True mass = 54.441778 g)

Measurement \#	Bathroom Scale	Lab Balance	Analytical Balance
1	0.1 kg	54.4 g	54.4418 g
2	0.0 kg	54.5 g	54.4417 g
3	0.1 kg	54.3 g	54.4418 g
(average)	$(0.07 \mathrm{~kg})$	$(54.4 \mathrm{~g})$	$(54.4418 \mathrm{~g})$

good accuracy
good precision

Accuracy, Precision, and Significant Figures in Measurement

Mass of a Tennis Ball
(True mass = 54.441778 g)

| Measurement \# | Bathroom Scale | Lab Balance |
| :---: | :---: | :---: | Analytical Balance | 1 | 0.1 kg | 54.4 g |
| :---: | :---: | :---: |
| 54.5 g | 54.4418 g | |
| 2 | 0.0 kg | 54.3 g |
| 3 | 0.1 kg | 54.4418 g |
| (average) | $(0.07 \mathrm{~kg})$ | $(54.4 \mathrm{~g})$ |

good accuracy poor precision

Accuracy, Precision, and Significant Figures in Measurement

Mass of a Tennis Ball
(True mass =54.441 778 g)

Measurement \#	Bathroom Scale	Lab Balance	Analytical Balance
1	0.1 kg	54.4 g	54.4418 g
2	0.0 kg	54.5 g	54.4417 g
3	0.1 kg	54.3 g	54.4418 g
(average)	$(0.07 \mathrm{~kg})$	$(54.4 \mathrm{~g})$	$(54.4418 \mathrm{~g})$

poor accuracy
poor precision

Accuracy, Precision, and Significant Figures in Measurement

 Significant Figures: The total number of digits recorded for a measurementGenerally, the last digit in a reported measurement is uncertain (estimated).

Exact numbers and relationships (7 days in a week, 30 students in a class, etc.) effectively have an

Accuracy, Precision, and Significant Figures in Measurement

Rules for Counting Significant Figures (Left-to-Right):

1. Zeros in the middle of a number are like any other digit; they are always significant.

$4.803 \mathrm{~cm} \quad$ Four SFs

Accuracy, Precision, and Significant Figures in Measurement

Rules for Counting Significant Figures (Left-to-Right):

1. Zeros in the middle of a number are like any other digit; they are always significant.
2. Zeros at the beginning of a number are not significant (placeholders).
0.00661 g Three SFs
(or $6.61 \times 10^{-3} \mathrm{~g}$)

Accuracy, Precision, and Significant Figures in Measurement

Rules for Counting Significant Figures (Left-to-Right):

1. Zeros in the middle of a number are like any other digit; they are always significant.
2. Zeros at the beginning of a number are not significant (placeholders).
3. Zeros at the end of a number and after the decimal point are always significant.
55.220 K Five SFs

Accuracy, Precision, and Significant Figures in Measurement

Rules for Counting Significant Figures (Left-to-Right):

1. Zeros in the middle of a number are like any other digit; they are always significant.
2. Zeros at the beginning of a number are not significant (placeholders).
3. Zeros at the end of a number and after the decimal point are always significant.
4. Zeros at the end of a number and before the decimal point may or may not be significant.

$$
34,200 \mathrm{~m} \quad ? \mathrm{SFs}
$$

Rounding Numbers

Math Rules for Keeping Track of Significant Figures:

- Multiplication or Division: The answer can't have more significant figures than any of the original numbers.

$$
\begin{aligned}
& \text { Three SFs } \begin{aligned}
\text { Four SFs } \frac{278 \mathrm{mi}}{11.70 \mathrm{gal}} & =23.760684 \\
& =23.8 \mathrm{mi} / \mathrm{gal} \\
&
\end{aligned} \\
& \text { Three SFs }
\end{aligned}
$$

Rounding Numbers

Math Rules for Keeping Track of Significant Figures:

- Multiplication or Division: The answer can't have more significant figures than any of the original numbers.
- Addition or Subtraction: The answer can't have more digits to the right of the decimal point than any of the original numbers.

$$
\begin{aligned}
& 3.18 \longrightarrow \text { Two decimal places } \\
& +0.01315 \longrightarrow \text { Five decimal places } \\
& 3.19315 \\
& 3.19 \longrightarrow \text { Two decimal places }
\end{aligned}
$$

Rounding Numbers

Rules for Rounding off Numbers:

1. If the first digit you remove is less than 5 , round down by dropping it and all following numbers.
$5.664525=5.66$

Rounding Numbers

Rules for Rounding off Numbers:

1. If the first digit you remove is less than 5 , round down by dropping it and all following numbers.
2. If the first digit you remove is 6 or greater, round up by adding 1 to the digit on the left.
$5.664525=5.7$

Rounding Numbers

Rules for Rounding off Numbers:

1. If the first digit you remove is less than 5 , round down by dropping it and all following numbers.
2. If the first digit you remove is 6 or greater, round up by adding 1 to the digit on the left.
3. If the first digit you remove is 5 and there are more nonzero digits following, round up.
$5.664525=5.665$

Rounding Numbers

Rules for Rounding off Numbers:

1. If the first digit you remove is less than 5 , round down by dropping it and all following numbers.
2. If the first digit you remove is 6 or greater, round up by adding 1 to the digit on the left.
3. If the first digit you remove is 5 and there are more nonzero digits following, round up.
4. If the digit you remove is a 5 with nothing following, round down.
$5.664525=5.66452$

END PREVIOUS SLIDES ARE TO BE COVERED IN LAB CLASS

