

Lecture Presentation

Chapter 11 Liquids, Solids, and Phase Changes

11.1, 11.2, 11.3, 11.4, 11.15, 11.17, 11.26, 11.30, 11.32, 11.40, 11.42, 11.60, 11.82, 11.116

> John E. McMurry Robert C. Fay

Properties of Liquids

Viscosity: The measure of a liquid's resistance to flow (higher intermolecular force, higher viscosity)

Surface Tension: The resistance of a liquid to spread out and increase its surface area (forms beads) (higher intermolecular force, higher surface tension)

Surface tension causes these drops of liquid mercury to form beads.

Molecules or atoms on the **surface** feel attractive forces on only one side and are thus drawn in toward the liquid.

Molecules or atoms in the **middle** of a liquid are attracted equally in all directions.

Properties of Liquids

low intermolecular force – low viscosity, low surface tension

TABLE 11.1 Viscosities and Surface Tensions of Some Common Substances at 20 °C

Name	Formula	Viscosity (N•s/m ²)	Surface Tension (J/m^2)
Pentane	$C_{5}H_{12}$	2.4×10^{-4}	1.61×10^{-2}
Benzene	C_6H_6	6.5×10^{-4}	2.89×10^{-2}
Water	H ₂ O	1.00×10^{-3}	$7.29 imes 10^{-2}$
Ethanol	C ₂ H ₅ OH	1.20×10^{-3}	$2.23 imes 10^{-2}$
Mercury	Hg	1.55×10^{-3}	$4.6 imes 10^{-1}$
Glycerol	$C_3H_5(OH)_3$	1.49	6.34×10^{-2}

high intermolecular force – high viscosity, high surface tension

HW 11.1 Properties of Liquids

high intermolecular force – high viscosity, high surface tension

For the following molecules which has the higher intermolecular force, viscosity and surface tension ? (LD structure, VSEPRT, dipole of molecule) (if the molecules are in the liquid state)

a. CHCl₃ vs CH₄

b. H_2O vs H_2

c. $N Cl_3$ (changed from handout) $VS N H Cl_2$

Phase Change (State Change): A change in the physical state but not the chemical identity of a substance

Fusion (melting): solid to liquid

Vaporization: liquid to gas

Sublimation: solid to gas

Freezing: liquid to solid

Condensation: gas to liquid

Deposition: gas to solid

Heat (Enthalpy) of Fusion (ΔH_{fusion}): The amount of energy required to overcome enough intermolecular forces to convert a solid to a liquid

Heat (Enthalpy) of Vaporization (ΔH_{vap}): The amount of energy required to overcome enough intermolecular forces to convert a liquid to a gas

HW 11.2: Phase Changes between Solids, Liquids, & Gases

 $\Delta H_{\text{fusion}} \text{ solid to a liquid } \Delta H_{\text{vap}} \text{ liquid to a gas}$ At phase change (melting, boiling, etc) : $\Delta G = \Delta H - T\Delta S \quad \& \quad \Delta G = \text{zero (bc 2 phases in equilibrium)}$ $\Delta H = T\Delta S$

a. BP of ethanol is 78.4°C Δ H_{vap} = 38.56 kJ/mol. What is the entropy change for the vaporization (Δ S_{vap} in J/(Kmol) ?

 $\Delta S = \Delta H/T = 38.56 \text{ kJ/mol} / (78.4 \circ C + 273.15) \text{ K} =$ $\Delta S = 38.56 \text{ kJ}/351.55 \text{ (mol K)} = 0.10969 \text{ kJ/(mol K)} = 110 \text{ J/(mol K)}$

b. CHCl₃ has Δ H_{vap} = 29.2 kJ/mol and Δ S_{vap} = 87.5 J/(K mol). What is the BP of the CHCl₃ in Kelvin ?

End C sect 1/21 Tuesday

HW 11.2: Phase Changes between Solids, Liquids, & Gases ΔH_{fusion} solid to a liquid ΔH_{vap} liquid to a gasAt phase change (melting, boiling, etc) : $\Delta G = \Delta H - T\Delta S$ & $\Delta G = zero$ (bc 2 phases in equilibrium) $\Delta H = T\Delta S$

- a. BP of ethanol is 78.4°C $\Delta H_{vap} = 38.56 \text{ kJ/mol}$. What is the entropy change for the vaporization (ΔS_{vap} in J/(Kmol) ? $\Delta S = \Delta H/T = 38.56 \text{ kJ/mol} / (78.4°C + 273.15) \text{ K} = \Delta S = 38.56 \text{ kJ/351.55} \text{ (mol K)} = 0.10969 \text{ kJ/(mol K)} = 110 \text{ J/(mol K)}$
- b. CHCl₃ has Δ H_{vap} = 29.2 kJ/mol and Δ S_{vap} = 87.5 J/(K mol). What is the BP of the CHCl₃ in Kelvin ?

 $T = \Delta H_{vap} / \Delta S_{vap} = (29.2 \text{ kJ*1000 J/kJ}) / \text{mol} / \{87.5 \text{ J/ (K mol)}\}$ T = 334 K Quiz 2 ends here End 1/22 A section

BP = T when vapor pressure of liquid equals atmospheric pressure

Phase Changes between Solids, Liquids, and Gases for water (physical state conversions – occurs with no change in temperature) (ΔH_{fus} , ΔH_{yap})

Heating Curve for Water

Phase Changes between Solids, Liquids, and Gases for water (physical state conversions – occurs with no change in temperature) (ΔH_{fus} , ΔH_{vap})

usually $\Delta H_{vap} > \Delta H_{fus}$

because for <u>vaporization</u>, you need to break ALL intermolecular force bonds between molecules

Phase Changes between Solids, Liquids, and Gases Heating Curve for Water

(a) Heat ice from -25 to 0°C: molar heat capacity ice = 36.57 J/(mol °C) $(36.57 \text{ J/mol °C})(T_f - T_i) = 0.914 \text{ kJ/mol}$

(b) *Melting ice: $\Delta H_{\text{fusion}} = +6.01 \text{ kJ} / \text{mol}$

(c) Heating liquid water from 0°C to 100 °C : molar heat capacity water = 75.4 J/(mol °C) (75.4 J/mol oC)* (100°C) = 7.54 x 10³ J/mol = 7.54 kJ /mol

(d) *Vaporizing liquid water: $\Delta H_{vap} = +40.67 \text{ kJ/mol}$ largest energy for process

(e) Heating water vapor from 100°C to 125°C: Molar heat capacity of water vapor = 33.6 J/mol °C $33.6 \text{ J/mol} ^{\circ}\text{C} * 25^{\circ}\text{C} = 0.840 \text{ kJ/mol}$

$$q = n * C_m * \Delta T$$

$$q = n \Delta H_{fus}$$

$$q = n \Delta H_{vap}$$

HW 11.3: Phase Changes between Solids, Liquids, and Gases Heating Curve for Water

$$q = n * C_m * \Delta T$$
$$q = n \Delta H_{fus}$$
$$q = n \Delta H_{vap}$$

 $C_{m [H2O (1)]} = 75.4 \text{ J/mol oC}$ $C_{m [H2O (s)]} = 36.57 \text{J/mol oC}$ $C_{m [H2O (g)]} = 33.6 \text{ J/mol oC}$ $\Delta H_{fus} = 6.01 \text{ kJ/mol}$ $\Delta H_{vap} = 40.67 \text{ kJ/mol}$

If you have 0.351 moles of liquid water, what would be the heat needed to vaporize that water ?

If you have 1.2 moles of ice, what is the heat needed to raise the temperature of the ice from -17.5 °C to -0.4 °C ?

HW 11.3: Phase Changes between Solids, Liquids, and Gases Heating Curve for Water

$$q = n * C_m * \Delta T$$
$$q = n \Delta H_{fus}$$
$$q = n \Delta H_{vap}$$

 $\begin{array}{l} C_{m \, [H2O \, (l)]} = 75.4 \ J/mol \ ^{o}C \\ C_{m \, [H2O \, (s)]} = 36.57 \ J/mol \ ^{o}C \\ C_{m \, [H2O \, (g)]} = 33.6 \ J/mol \ ^{o}C \\ \Delta H_{fus} = 6.01 \ kJ/mol \\ \Delta H_{vap} = 40.67 \ kJ/mol \end{array}$

If you have 0.351 moles of liquid water, what would the heat needed to vaporize that water ?

q = (0.351 mol) * 40.67 kJ/mol = 14.3 kJ

End 1/22 Wed C section, end 1/24 Friday A section

If you have 1.2 moles of ice, what is the heat needed to raise the temperature of the ice from -17.5 °C to -0.4 °C ?

 $q = (1.2 \text{ moles ice}) (36.57 \text{ J/mol} \circ \text{C}) (-0.4 \circ \text{C} + 17.5 \circ \text{C}) = 750 \text{ J}$

TABLE 11.2 Heats of Fusion and Heats of Vaporization for SomeCommon Compounds

Name	Formula mass	Formula	ΔH _{fusion} (kJ/mol)	ΔH _{vap} (kJ/mol)
Ammonia	17	NH ₃	5.66	23.33
Benzene	78	C_6H_6	9.87	30.72
Ethanol	46	C_2H_5OH	4.93	38.56
Helium	2	He	0.02	0.08
Mercury	200	Hg	2.30	59.11
Water	18	H ₂ O	6.01	40.67

(a) in general: $\Delta H_{vap} > \Delta H_{fusion}$

(b) $\Delta H_{vap} = \text{negative } \Delta H_{condensation}$ $\Delta H_{fusion} = \text{negative } \Delta H_{freezing}$

(c) 1 Hydrogen bond vs. 2 Hydrogen bonds

(d) London dispersion forces - sometimes larger effect than H bond (largest Formula Mass, greatest enthalpy of fusion & vaporization)

For the same molecule:

Largest ΔS for gaseous form of compoundMedium ΔS for liquid form of compoundSmallest ΔS for solid form of compound

For a Reaction:

Largest ΔS for the side of the reaction with larger number of gaseous molecules.

ex: $2 H_2(g) + O_2(g) \rightarrow 2 H_2O(g)$ $\Delta S_{reactant} > \Delta S_{product}$

End Test 1

Start Test 2, Quiz 3

Evaporation, Vapor Pressure, and Boiling Point

Vapor Pressure: The partial pressure of a gas in equilibrium with a liquid at a constant temperature

A liquid sitting for a length of time in an open container evaporates, but a liquid sitting in a closed container causes a rise in pressure.

Evaporation, Vapor Pressure, and Boiling Point

Kinetic energy →

Number of molecules

Evaporation, Vapor Pressure, and Boiling Point

Clausius–Clapeyron Equation

$$\ln P_{\rm vap} = \left(-\frac{\Delta H_{\rm vap}}{R}\right)\frac{1}{T} + C$$

y = m x + b

Omit this equation – Omission from Departmental Syllabus

End C section: Friday 1/24/20

Amorphous Solids: Particles are randomly arranged and have no ordered long-range structure. examples: rubber, window glass, plastic, butter

Crystalline Solids: Particles have an ordered arrangement extending over a long range.

- ionic solids (ex: NaCl, BaF₂)
- <u>molecular (covalent molecule) solids</u> (ex: C₁₂H₂₆, I₂, naphthalene, sucrose)
- <u>covalent network solids</u> (ex: carbon, silicon dioxide)
- <u>metallic solids</u> (ex: metallic Fe, metallic Na, metallic Pt, etc)

End 1/27 Monday A section

crystalline

 (a) A crystalline solid such as this amethyst, has flat faces and distinct angles.
 These regular macroscopic features reflect a similarly ordered arrangement of particles at the atomic level.

amorphous

(b) An amorphous solid like rubber has a disordered arrangement of its constituent particles.

types of crystalline solids

TABLE 11.4	11.4 Types of Crystalline Solids and Their Characteristics				
Type of Solid	Intermolecular Forces	Properties	Examples		
Ionic	Ion-ion forces	Brittle, hard, high-melting	NaCl, KBr, MgCl ₂		
Molecular	Dispersion forces, dipole-dipole forces, hydrogen bonds	Soft, low-melting, nonconducting	H_2O , Br_2 , CO_2 , CH_4		
Covalent network	Covalent bonds	Hard, high-melting	C (diamond), SiO_2		
Metallic	Metallic bonds	Variable hardness and melting point, conducting	Na, Zn, Cu, Fe		

Ionic Solids: Particles are ions ordered in a regular, three-dimensional arrangement and held together by ionic bonds. An example is sodium chloride.

Molecular Solids: Particles are covalent molecules held together by intermolecular forces. example: H_2O (solid) ice – held together by H bond

(a) Ice consists of individual H_2O molecules held together in a regular manner by hydrogen bonds.

Covalent Network Solids: Particles are atoms linked together by covalent bonds into a giant, three-dimensional array. <u>example</u> quartz (SiO₂), diamond (C), graphite (C) – held together by covalent bond

(b) Quartz (SiO₂) is essentially one very large molecule with Si–O covalent bonds. Each silicon atom has tetrahedral geometry and is bonded to four oxygens; each oxygen has approximately linear geometry and is bonded to two silicons.

(c) This shorthand representation shows how SiO_4 tetrahedra join at their corners to share oxygen atoms.

Metallic Solids: Particles are metal atoms whose crystals have metallic properties such as electrical conductivity. example: Fe (metallic elemental iron), Na (metallic elemental sodium), etc.

Structures of Some Covalent Network Solids – large network held together by covalent bonding Carbon Allotropes

Allotropes: Different structural forms of an element

Carbon Allotropes

- Graphite
- Diamond
- Fullerene
- Nanotubes

Structures of some Covalent Network Solids Carbon Allotropes

(a) **Graphite** is a covalent network solid consisting of two-dimensional sheets of sp^2 -hybridized carbon atoms organized into six-membered rings.

Structures of Some Covalent Network Solids

Carbon Allotropes

(a) Fullerene is a molecular solid whose molecules have the shape of a soccer ball. The ball has 12 pentagonal and 20 hexagonal faces, and each carbon atom is sp^2 -hybridized.

(b) Carbon nanotubes consist of sheets of graphite rolled into tubes of 2–30 nm diameter.

Structures of Some Covalent Network Solids

Silica (SiO₂)

- Quartz
- Sand

window glass, quartz glass SiO₂ melted and then solidified into an <u>amorphous form</u>

HW 11.4: Kinds of Solids

Amorphous Solids:

<u>**Crystalline Solids**</u>: ionic solids, molecular solids, covalent network solids, metallic solids

Classify each as one of the above types of solid. (example: amorphous, or crystalline-metallic, etc) (accidentally left off the * on HW)

 $CaCl_2$ diamond (C) Li F Zinc (Zn) window glass SiO₂ (quartz crystal) $C_{10}H_8$ (naphthalene)* H_2O (solid)*

HW 11.4: Kinds of Solids

Amorphous Solids:

<u>**Crystalline Solids**</u>: ionic solids, molecular solids, covalent network solids, metallic solids

Classify each as one of the above types of solid. (example: amorphous, or crystalline-metallic, etc) (accidentally left off the * on HW)

 $CaCl_2$ diamond (C) Li F Zinc (Zn) window glass SiO₂ (quartz crystal) C₁₀H₈ (naphthalene)* H₂O (solid)* crystalline, ionic crystalline, covalent network crystalline, ionic crystalline, metallic amorphous crystalline, covalent network crystalline, molecular solid crystalline, molecular solid

HW 11.4: Kinds of Solids

Amorphous Solids:

<u>**Crystalline Solids**</u>: ionic solids, molecular solids, covalent network solids, metallic solids

Classify each as one of the above types of solid. (example: amorphous, or crystalline-metallic, etc)

 $CaCl_2$ diamond (C) Li F Zinc (Zn) window glass SiO₂ (quartz crystal) crystalline, ionic crystalline, covalent network crystalline, ionic crystalline, metallic amorphous crystalline, covalent network Probing the Structure of Solids: X-Ray Crystallography – spectroscopic method to view crystal structure (using X-ray electromagnetic radiation & diffraction) (not responsible on test)

The Packing of Spheres in Crystalline Solids: Unit Cells (this slide crystalline metallic) (not on test)

(a) Simple Cubic Packing: All layers are identical, and all atoms are lined up in stacks and rows.

(b) Body-Centered Cubic Packing:

The spheres in **layer** *a* are separated slightly and the spheres in **layer** *b* are offset so that they fit into the depressions between atoms in layer *a*. The third layer is a repeat of the first.

Coordination Number 6:

Each sphere is touched by six neighbors, four in the same layer, one directly above, and one directly below.

Coordination Number 8: Each sphere is touched by eight neighbors, four in the layer below, and four in the layer above.

If with more space between them then get next slide.

The Packing of Spheres in Crystalline Solids: Unit Cells (not on test) (fig a and b for all other

crystals except metals)

Phase Diagrams A plot of Pressure (y scale) and Temperature (x scale)

Increase T \rightarrow solid melts to liquid to gas Increase P \blacklozenge gas becomes liquid or solid

Phase Diagrams

Normal Boiling Point: T (BP) at 1 atm of external pressure

Normal Melting Point: T (MP) at 1 atm of external pressure

Triple Point: equilibrium point with gas, liquid and solid

Phase Diagrams

Critical Point: T & P beyond which gas can't be made liquid

- Critical Temperature: T beyond which a gas can't be made liquid regardless of P
- Critical Pressure: P beyond which a liquid can't be made gas regardless of T

Supercritical Fluid: A state of matter beyond the critical point that is neither liquid nor gas

Phase Diagrams Water

Normal Boiling Point: T (BP) at 1 atm of external pressure Normal Melting Point: T (MP) at 1 atm of external pressure Triple Point: equilibrium point with gas, liquid and solid

Critical Point: T & P beyond which gas can't be made liquid **Supercritical Fluid**: A state of matter beyond the critical point that is neither liquid nor gas

Phase Diagrams Carbon Dioxide

Normal Boiling Point: T (BP) at 1 atm of external pressure Normal Melting Point: T (MP) at 1 atm of external pressure Triple Point: equilibrium point with gas, liquid and solid

Critical Point: T & P beyond which gas can't be made liquid **Supercritical Fluid**: A state of matter beyond the critical point that is neither liquid nor gas

HW 11.5: Phase Diagrams Fill in the blank with a letter

Supercritical Fluid: A state of matter beyond the critical point that is neither liquid nor gas

HW 11.5: Phase Diagrams Fill in the blank with a letter

Supercritical Fluid: A state of matter beyond the critical point that is neither liquid nor gas

Phase Diagrams

Water

Shows water at triple point equilibrium solid, liquid & gas

End 1/31 A,C section