

Lecture Presentation

Chapter 12 Solutions and Their Properties
$12.1,12.3,12.4,12.7,12.8$, $12.9,12.11,12.13,12.15$, $12.17,12.19,12.21,12.30$, $12.44,12.46,12.48,12.50$, 12.54, 12.58, 12.62, 12.66, $12.68,12.72,12.74,12.94$, 12.106 John E. McMurry Robert C. Fay

End $1 / 31$ Friday A section

Solutions

Solution: A homogeneous mixture

End 1/31/20
 Friday C section

Solvent: The major component

Solute: A minor component

TABLE 12.1 Some Different Kinds of Solutions

Kind of Solution	Example
Gas in gas	Air $\left(\mathrm{O}_{2}, \mathrm{~N}_{2}, \mathrm{Ar}\right.$, and other gases)
Gas in liquid	Carbonated water $\left(\mathrm{CO}_{2}\right.$ in water $)$
Gas in solid	H_{2} in palladium metal
Liquid in liquid	Gasoline (mixture of hydrocarbons)
Liquid in solid	Dental amalgam (mercury in silver)
Solid in liquid	Seawater (NaCl and other salts in water)
Solid in solid	Metal alloys, such as sterling silver $(92.5 \% \mathrm{Ag}, 7.5 \% \mathrm{Cu})$

Energy Changes and the Solution Process

Like dissolves like. Solutions form when
the intermolecular forces involved in
these three kinds of interactions are similar.

Soluble: same intermolecular interactions
(a) salts in water
(b) H bonded with H bonded
(c) hydrocarbons in other hydrocarbons
(d) dipole dipole with dipole dipole

HW 12.1: Energy Changes and the Solution Process

Like dissolves Like
Match the following for solutes which will BEST dissolve in solvents. Fill in the blank with letters. Blank may have more than one letter. (asking for most soluble may be soluble in more than one solvent)
solute
(a) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$
(b) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$
(c) NaCl
(d) $\mathrm{CH}_{2} \mathrm{Cl}_{2}$
solvents
(1) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$
b
(2) $\mathrm{H}_{2} \mathrm{O}$
(3) $\mathrm{CH}_{3} \mathrm{Cl}$
a, c
d

Energy Changes and the Solution Process

The sodium and chloride ions are hydrated.

Water molecules surround an accessible edge or corner ion in a crystal and collide with it until the ion breaks free.

Energy Changes and the Solution Process

There is an entropy change for the solution process.
$\underset{\text { (lower entropy) }}{\text { Less randomness }} \longrightarrow \underset{\text { (higher entropy) }}{\text { More randomness }}$

Solution \#1

Solution \#2

Liquid 1

Liquid 2

Solution

Solution

Energy Changes and the Solution Process

$$
\Delta G=\Delta H-T \Delta S
$$

$\Delta \mathrm{S}$ solution is always + (because solution increases disorder)

TABLE 12.2 Some Enthalpies and Entropies of Solution in Water at $25^{\circ} \mathrm{C}$

Substance	$\Delta \boldsymbol{H}_{\text {soln }}(\mathbf{k} \mathbf{J} / \mathbf{m o l})$	$\Delta \boldsymbol{S}_{\text {soln }}[\mathbf{J} /(\mathbf{K} \cdot \mathbf{m o l})]$
LiCl	-37.0	10.5
NaCl	3.9	43.4
KCl	17.2	75.0
LiBr	-48.8	21.5
NaBr	-0.6	54.6
KBr	19.9	89.0
KOH	-57.6	12.9

Endothermic: $+\Delta H$ Spontaneous: $-\Delta G$ Exothermic: $-\Delta H \quad$ Nonspontaneous: $+\Delta G$
Entropy always favors solution,
(a) Enthalpy = negative - always spontaneous
(b) Enthalpy = positive - spontaneous or not depends on size of terms \& T

Energy Changes and the Solution Process

Dissolution of CaCl_{2} in water is exothermic, causing the temperature of the water to rise from its initial $25^{\circ} \mathrm{C}$ value.

Dissolution of $\mathrm{NH}_{4} \mathrm{NO}_{3}$ is endothermic, causing the temperature of the water to fall from its initial $25^{\circ} \mathrm{C}$ value.

Exothermic - system (solute) loses heat surrounding (water) gains heat (always spontaneous)

Energy Changes and the Solution Process

To get solution:
break up solvent-solvent \& solute-solute interactions form - solvent-solute interaction

Solvent-Solvent Interactions: Energy is absorbed (positive ΔH) to break up intermolecular forces between solvent molecules. (add energy)

Solute-Solute Interactions: Energy is absorbed (positive ΔH) to break up intermolecular forces holding solute particles together in a crystal. (add energy)

Solvent-Solute Interactions: Energy is released (negative ΔH) when solvent molecules cluster around solute particles and solvate them. (get energy)

Energy Changes and the Solution Process

$$
\Delta H_{\text {soln }}<0
$$

$\overline{\Delta H_{\text {soln }}}$ is negative if solvent-solute interactions are dominant.

$$
\Delta H_{\text {soln }}>0
$$

$\overline{\Delta H_{\text {soln }}}$ is positive if solvent-solute interactions are not dominant.
overall $\Delta \mathrm{H}_{\text {soln }}$ negative if more energy released during solution process than energy added to break up solute-solute and solvent solvent interactions. ($\Delta \mathrm{G}$ negative, always spontaneous, system loses heat, surrounding get hot)

Concentration Units for Solutions

$$
\text { Molarity }(\mathbf{M})=\frac{\text { Moles of solute }}{\text { Liters of solution }}
$$

Mole fraction $(\boldsymbol{X})=\frac{\text { Moles of component }}{\text { Total moles making up solution }}$

$$
\text { Mass percent }=\frac{\text { Mass of component }}{\text { Total mass of solution }} \times 100 \%
$$

$$
\text { Molality }(m)=\frac{\text { Moles of solute }}{\text { Mass of solvent }(\mathrm{kg})}
$$

HW 12.2: Concentration Units for Solutions

Molarity (M) $=\frac{\text { Moles of solute }}{\text { Liters of solution }}$

Calculate the molarity of a solution made by dissolving 35.2 grams of $\mathrm{NaCl}(\mathrm{FM}=58.5 \mathrm{~g} / \mathrm{mol})$ into water to make up 235 mL of the solution.

HW 12.2: Concentration Units for Solutions

$$
\text { Molarity }(\mathbf{M})=\frac{\text { Moles of solute }}{\text { Liters of solution }}
$$

Calculate the molarity of a solution made by dissolving 35.2 grams of NaCl ($\mathrm{FM}=58.5 \mathrm{~g} / \mathrm{mol}$) into water to make up 235 mL of the solution.
> $35.2 \mathrm{~g} \mathrm{NaCl} * 1 \mathrm{~mol} \mathrm{NaCl}=0.602 \mathrm{~mol} \mathrm{NaCl}$ 58.5 g NaCl

235 mL solution * $\frac{1 \mathrm{~L} \text { soln. }}{1000 \mathrm{~mL} \text { soln. }}=0.235 \mathrm{~L}$ solution
$\frac{0.602 \mathrm{~mol} \mathrm{NaCl}}{0.235 \mathrm{~L} \text { solution }}=2.56 \mathrm{M}$ of Na Cl

Concentration Units for Solutions

What is the molality of a solution prepared by dissolving 0.385 g of cholesterol, $\mathrm{C}_{27} \mathrm{H}_{46} \mathrm{O}$, in 40.0 g chloroform, CHCl_{3} ? molality $(\mathrm{m})=$ moles solute $/ \mathrm{kg}$ solvent

Convert the mass of cholesterol (solute) to moles:

$$
0.385 \mathrm{~g} \times \frac{1 \mathrm{~mol}}{386.0 \mathrm{~g}}=0.000997 \mathrm{~mol}
$$

Calculate the mass of chloroform (solvent) to kilograms:

$$
40.0 \mathrm{~g} \times \frac{1 \mathrm{~kg}}{1000 \mathrm{~g}}=0.0400 \mathrm{~kg}
$$

Calculate the molality of the solution:
0.000997 mol
$\overline{0.0400 \mathrm{~kg}}=0.0249 \mathrm{~m}$

HW12.3: Concentration Units for Solutions

Molality $(m)=\frac{\text { Moles of solute }}{\text { Mass of solvent (kg) }}$
What is the molality of a solution made by dissolving 35.2 grams of $\mathrm{NaCl}(\mathrm{FM}=58.5 \mathrm{~g} / \mathrm{mol})$ in 525 mL of water? The density of water is $1.00 \mathrm{~g} / \mathrm{mL}$ under the conditions of the reaction.

> End $2 / 3$ Monday
> A section
> End 2/4 Tuesday
> C section

HW12.3: Concentration Units for Solutions

Molality (m) $=\frac{\text { Moles of solute }}{\text { Mass of solvent (kg) }}$

What is the molality of a solution made by dissolving 35.2 grams of $\mathrm{NaCl}(\mathrm{FM}=58.5 \mathrm{~g} / \mathrm{mol})$ in 525 mL of water? The density of water is $1.00 \mathrm{~g} / \mathrm{mL}$ under the conditions of the reaction.
$35.2 \mathrm{~g} \mathrm{NaCl} * \frac{1 \mathrm{~mol} \mathrm{NaCl}}{58.5 \mathrm{~mol} \mathrm{NaCl}}=0.602 \mathrm{~mol} \mathrm{NaCl}$
525 mL water $* \frac{1.00 \mathrm{~g} \text { water }}{\mathrm{mL} \text { water }} * \frac{1 \mathrm{Kg} \text { water }}{1000 \mathrm{~g} \text { water }}=0.525 \mathrm{Kg}$ water
$0.602 \mathrm{~mol} \mathrm{NaCl}=1.15 \mathrm{~m} \mathrm{Na} \mathrm{Cl}$ in water
0.525 Kg

HW 12.4: Concentration Units for Solutions

Mass percent $=\frac{\text { Mass of component }}{\text { Total mass of solution }} \times 100 \%$

What is the mass percent of a solution made of 35.2 grams of sodium chloride dissolved in 92.5 grams of water?

HW 12.4: Concentration Units for Solutions

Mass percent $=\frac{\text { Mass of component }}{\text { Total mass of solution }} \times 100 \%$
What is the mass percent of a solution made of 35.2 grams of sodium chloride dissolved in 92.5 grams of water?

Total mass of solution $=35.2$ grams +92.5 grams
$\frac{35.2 \text { grams }}{127.7 \text { grams }} \quad * 100=27.6 \%$

HW 12.5: Concentration Units for Solutions

Mole fraction $(X)=\frac{\text { Moles of component }}{\text { Total moles making up solution }}$

What is the mole fraction made by dissolving 7.25 moles of Na Cl in enough water to make up a solution consisting of 252.2 grams of water $(F M$ water $=18.02 \mathrm{~g} / \mathrm{mol})$?

HW 12.5: Concentration Units for Solutions

Mole fraction $(X)=\frac{\text { Moles of component }}{\text { Total moles making up solution }}$

What is the mole fraction made by dissolving 7.25 moles of NaCl in enough water to make up a solution consisting of 252.2 grams of water $(\mathrm{FM}$ water $=18.02 \mathrm{~g} / \mathrm{mol})$?

Moles water $=\frac{252.2 \text { grams water }}{18.02 \text { grams water } / \mathrm{mol} \text { water }}=14.0$ moles water

$\frac{7.25 \mathrm{moles} \mathrm{NaCl}}{14.0 \text { moles } \mathrm{H}_{2} \mathrm{O}+7.25 \mathrm{moles} \mathrm{NaCl}}=$| 0.341 mole fraction |
| :---: |
| of NaCl in solution |

$\frac{14.0 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}{14.0 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}+7.25 \mathrm{~mol} \mathrm{NaCl}} \quad=0.659 \mathrm{~mol}$ fraction of
water in solution

HW 12.6: Concentration Units for Solutions

Convert 3.50 mass percent of NaCl to Molarity. The density of the solution is $1.025 \mathrm{~g} / \mathrm{mL}$ at $20^{\circ} \mathrm{C}$. $(\mathrm{FM} \mathrm{NaCl}=$ $58.5 \mathrm{~g} / \mathrm{mol})$ ($\mathrm{M}=$ moles solute $/$ liter solution) end A section

HW 12.6: Concentration Units for Solutions

Convert 3.50 mass percent of NaCl to Molarity. The density of the solution is $1.025 \mathrm{~g} / \mathrm{mL}$ at $20^{\circ} \mathrm{C}$. ($\mathrm{FM} \mathrm{NaCl}=$ $58.5 \mathrm{~g} / \mathrm{mol})$ ($\mathrm{M}=$ moles solute / liter solution)
[(mass solute/mass solution)*100 = mass \%]
Assuming 100.00 g of solution, calculate the volume:
100.00 g solution $\times \frac{1 \mathrm{~mL}}{1.025 \mathrm{~g}} \times \frac{1 \mathrm{~L}}{1000 \mathrm{~mL}}=0.0976 \mathrm{~L}$

Convert the mass of NaCl to moles:
$3.50 \mathrm{~g} \mathrm{NaCl} \times \frac{1 \mathrm{~mol}}{58.5 \mathrm{~g}}=0.0598 \mathrm{~mol}$

End 2/5 W
A \& C section

Calculate the molarity of the solution:
0.0598 mol
$\frac{0.0976 \mathrm{~L}}{0.0976}=0.613 \mathrm{M}$

Quiz 3 ends here

 (given on 2/7/20 F) both sections
Concentration Units for Solutions

TABLE 12.3 A Comparison of Various Concentration Units

Name	Units	Advantages	Disadvantages
Molarity (M)	$\frac{\text { mol solute }}{\text { L solution }}$	Useful in stoichiometry; by volume	Temperature-dependent; must know density to find solvent mass
Mole fraction (X)	none	Temperature-independent; useful in special applications	Measure by mass; must know density to convert to molarity
Mass \%	$\%$	Temperature-independent; useful for small amounts	Measure by mass; must know density to convert to molarity
Molality (m)	$\frac{\text { mol solute }}{\text { kg solvent }}$	Temperature-independent; useful in special applications	Measure by mass; must know density to convert to molarity

Some Factors That Affect Solubility

Saturated Solution: A solution containing the maximum possible amount of dissolved solute at equilibrium

$$
\text { Solute + Solvent } \underset{\text { crystallize }}{\stackrel{\text { dissolve }}{\rightleftharpoons}} \text { Solution }
$$

Supersaturated Solution: A solution containing a greater-than-equilibrium amount of solute (usually get supersatureated solution by heating to dissolve solute and then cooling solution)

A supersaturated solution of sodium acetate in water.

Supersaturated solution

Some Factors That Affect Solubility

Most substances become more soluble as temperature rises, although the exact relationship is often complex and nonlinear.
most solids more soluble - higher temperature of solvent

Some Factors That Affect Solubility

gases less soluble - higher temperature of solvent

Some Factors That Affect Solubility

Henry's Law

Solubility $=k P$

Equilibrium
At a given pressure, an equilibrium exists in which equal numbers of gas particles enter and leave the solution.

Pressure increase
When pressure is increased by pushing on the piston, more gas particles are temporarily forced into solution than are able to leave.
gases more soluble at higher P

Equilibrium restored
Solubility therefore increases until a new equilibrium is reached.

Some Factors That Affect Solubility

The solubility of CO_{2} in water is $3.2 \times 10^{-2} \mathrm{M}$ at $25^{\circ} \mathrm{C}$ and 1 atm pressure. What is the Henry's-law constant for CO_{2} in $\mathrm{mol} /(\mathrm{L}$ atm)?

```
Solubility \(=k P\)
Solubility (M) (mol solute / L solution)
Henry's Law constant [mol/(L atm)]
\(P\) (atm)
```

$k=\frac{\text { Solubility }}{P}=\frac{3.2 \times 10^{-2} \frac{\mathrm{~mol}}{\mathrm{~L}}}{1 \mathrm{~atm}}=3.2 \times 10^{-2} \mathrm{~mol} /(\mathrm{L} \mathrm{atm})$

HW 12.7: Some Factors That Affect Solubility

Solubility $=k P$

Solubility (M) Henry's Law constant [mol/(L atm)] P (atm)

If the Henry's Law constant of CO_{2} in water is $3.2 \times 10^{-2} \mathrm{~mol} /(\mathrm{L} \mathrm{atm})$, what is the solubility of CO_{2} in water at 2.5 atm ?

HW 12.7: Some Factors That Affect Solubility

Solubility $=k P$

Solubility (M) Henry's Law constant [mol/(L atm)]
P (atm)
If the Henry's Law constant of CO_{2} in water is $3.2 \times 10^{-2} \mathrm{~mol} /(\mathrm{L} \mathrm{atm})$, what is the solubility of CO_{2} in water at 2.5 atm ?
$\mathrm{k}=3.2 \times 10^{-2} \mathrm{~mol} /(\mathrm{L} \mathrm{atm}), \mathrm{P}=2.5 \mathrm{~atm}$
Solubility $=\left[3.2 \times 10^{-2} \mathrm{~mol} /(\mathrm{L} \text { atm })\right]^{*}(2.5 \mathrm{~atm})$
Solubility $=0.080 \mathrm{M}$ (or mol/L)

Physical Behavior of Solutions: Colligative Properties Colligative Properties: Properties that depend on the amount of a dissolved solute but not on its chemical identity (usually non volatile solute)

- Vapor-pressure lowering ($\left.\mathrm{P}_{\text {solution }}=i^{*} \mathrm{P}_{\text {solvent }}{ }^{*} \mathrm{X}_{\text {solvent }}\right)$ (Raoult's Law)
- Boiling-point elevation ($\left.\Delta \mathrm{T}_{\mathrm{b}}=i^{*} \mathrm{~K}_{\mathrm{b}}{ }^{*} \mathrm{~m}\right)$
- Freezing-point depression $\left(\Delta \mathrm{T}_{\mathrm{f}}=-i^{*} \mathrm{~K}_{\mathrm{f}}{ }^{*} \mathrm{~m}\right)$
- Osmotic pressure ($\Pi=i^{*} \mathrm{M}^{*} \mathrm{R}^{*} \mathrm{~T}$)
$X=$ mole fraction
$i=$ van't Hoff factor (=1 for nonelectrolytes) (= \# of ions in solution per formula) $\mathrm{m}=$ molality
K_{b} molal BP constant, K_{f} molal FP constant
$\mathrm{M}=$ molarity
$R=$ gas constant $=0.08206 \mathrm{~L}$ atm $/(\mathrm{mol} \mathrm{K})$

Vapor-Pressure Lowering of Solutions: Raoult's Law (colligative property)

Raoult's Law
 $P_{\text {soln }}=P_{\text {solv }} X_{\text {solv }}$

$$
\begin{aligned}
& P_{\text {soln }}=\text { Pressure of solution } \\
& P_{\text {solv }}=\text { Pressure of solvent } \\
& X_{\text {solv }}=\text { mole fraction of solvent }
\end{aligned}
$$

A solution of a nonvolatile solute always has a lower solute always has a low
vapor pressure than ...

> ... that of the pure solvent by an amount that depends on the mole fraction of the solvent.

Vapor-Pressure Lowering of Solutions: Raoult's Law (colligative property)

The vapor pressure of pure water at $25^{\circ} \mathrm{C}$ is 23.76 mm Hg . What is the vapor pressure of a solution made from 1.00 mol glucose in 15.0 mol of water at $25^{\circ} \mathrm{C}$? Glucose is a nonvolatile, non electrolyte solute.

$$
P_{\text {soln }}=P_{\text {solv }} X_{\text {solv }}
$$

$$
=23.76 \mathrm{~mm} \mathrm{Hg} \times \frac{15.0 \mathrm{~mol}}{1.00 \mathrm{~mol}+15.0 \mathrm{~mol}}=22.3 \mathrm{~mm} \mathrm{Hg}
$$

Van’t Hoff Factor (colligative properties)

For all colligative properties, when a salt dissolves in water, dissociates and gives more \# particles.

Van't Hoff Factor: $\quad i=\frac{\text { Moles of particles in solution }}{\text { Moles of solute dissolved }}$

$$
\mathrm{NaCl}(a q) \longrightarrow \mathrm{Na}^{+}(a q)+\mathrm{Cl}^{-}(a q)(\mathrm{i} \sim 2)
$$

For sodium chloride, the predicted value of \boldsymbol{i} is $\mathbf{2}$. For a 0.05 m solution of sodium chloride, the experimental value for \boldsymbol{i} is $\mathbf{1 . 9}$.
$\mathrm{CaCl}_{2} \rightarrow \mathrm{Ca}^{+2}(\mathrm{aq})+2 \mathrm{Cl}^{-}(\mathrm{aq}) \quad(\mathrm{i} \sim 3)$
Colligative properties depend on \# of particles.

BP Elevation (higher) \& FP Depression (lower) of Solutions (colligative property)

TABLE 12.4 Molal Boiling-Point-Elevation Constants (K_{b}) and Molal Freezing-Point-Depression Constants $\left(K_{f}\right)$ for Some Common Substances

Substance	$\boldsymbol{K}_{\mathbf{b}}\left[\left({ }^{\circ} \mathrm{C} \cdot \mathbf{k g}\right) / \mathbf{m o l}\right]$	$\boldsymbol{K}_{\mathrm{f}}\left[\left({ }^{\circ} \mathrm{C} \cdot \mathbf{k g}\right) / \mathbf{m o l}\right]$
Benzene $\left(\mathrm{C}_{6} \mathrm{H}_{6}\right)$	2.64	5.07
Camphor $\left(\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{O}\right)$	5.95	37.8
Chloroform $\left(\mathrm{CHCl}_{3}\right)$	3.63	4.70
Diethyl ether $\left(\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{O}\right)$	2.02	1.79
Ethyl alcohol $\left(\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}\right)$	1.22	1.99
Water $\left(\mathrm{H}_{2} \mathrm{O}\right)$	0.51	1.86

BP Elevation \& FP Depression of Soln (colligative property)

What is the FP (in ${ }^{\circ} \mathrm{C}$) of a solution prepared by dissolving 7.40 g of MgCl_{2} in 110 g of water? [van't Hoff $\left(\mathrm{MgCl}_{2}\right) i=2.7$]

Calculate the moles of $\mathbf{M g C l}_{2}$:

$$
\frac{1 \mathrm{~mol}}{95.2 \mathrm{~g}}=0.0777 \mathrm{~mol}
$$

Calculate the molality of the solution:

$$
\frac{0.0777 \mathrm{~mol}}{110 \mathrm{~g}} \times \frac{1000 \mathrm{~g}}{1 \mathrm{~kg}}=0.71 \frac{\mathrm{~mol}}{\mathrm{~kg}}
$$

$$
\Delta T_{\mathrm{f}}=K_{\mathrm{f}} m i
$$

$K_{\mathrm{f}(\text { water })}=1.86^{\circ} \mathrm{C} / \mathrm{m}$
$\mathrm{FP}($ water $)=0.0^{\circ} \mathrm{C}$

Calculate the freezing point of the solution:

$$
\begin{aligned}
\Delta T_{\mathrm{f}} & =K_{\mathrm{f}} m i=1.86 \frac{{ }^{\circ} \mathrm{C} \mathrm{~kg}}{\mathrm{~mol}} \times 0.71 \frac{\mathrm{~mol}}{\mathrm{~kg}} \times 2.7=3.6^{\circ} \mathrm{C} \\
T_{\mathrm{f}} & =0.0^{\circ} \mathrm{C}-3.6^{\circ} \mathrm{C}(\mathrm{FP} \text { depression })=-3.6^{\circ} \mathrm{C}
\end{aligned}
$$

What is the BP (in Celsius) of a solution prepared by dissolving 10.0 g of LiCl in 150.0 g of water. Assume complete dissociation. $(\mathrm{FM} \mathrm{LiCl}=42.39 \mathrm{~g} / \mathrm{mol})$

$$
\Delta T_{b}=K_{b} m i
$$

$$
\begin{aligned}
& K_{b} \text { (water) }=0.51^{\circ} \mathrm{C} / \mathrm{m} \\
& \operatorname{BP}(\text { water })=100.0^{\circ} \mathrm{C}
\end{aligned}
$$

What is the BP (in Celsius) of a solution prepared by dissolving 10.0 g of LiCl in 150.0 g of water. Assume complete dissociation. $(\mathrm{FM} \mathrm{LiCl}=42.39 \mathrm{~g} / \mathrm{mol})$

$$
\Delta T_{b}=K_{b} m i
$$

$$
\mathrm{m}=\frac{10.0 \mathrm{~g} \mathrm{LiCl}^{2}}{150.0 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}} * \frac{1 \mathrm{~mol} \mathrm{LiCl}_{2}}{42.39 \mathrm{~g} \mathrm{LiCl}^{2}} \frac{1000 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}}{1 \mathrm{~kg} \mathrm{H}_{2} \mathrm{O}}=1.57 \mathrm{~m} \mathrm{LiCl}
$$

$\mathrm{i}=2$ (complete dissociation)
$\Delta T_{b}=K_{b} m i$
$\Delta T_{b}=\left(0.51^{\circ} \mathrm{C} / \mathrm{m}\right)^{*} 1.57 \mathrm{~m} * 2$
$\Delta T_{b}=1.6^{\circ} \mathrm{C}$ (BP elevation)
$B P=100.0^{\circ} \mathrm{C}+1.6^{\circ} \mathrm{C}=101.6^{\circ} \mathrm{C}$

$$
\begin{aligned}
& K_{b} \text { (water) }=0.51^{\circ} \mathrm{C} / \mathrm{m} \\
& \operatorname{BP}(\text { water })=100.0^{\circ} \mathrm{C}
\end{aligned}
$$

Osmosis: The passage of solvent through a semipermeable membrane from the less concentrated side to the more concentrated side

Osmotic Pressure (П): The amount of pressure necessary to cause osmosis to stop, or the amount of pressure necessary to achieve an equilibrium passage of solvent molecules through a semipermeable membrane

Osmosis and Osmotic Pressure

$\Pi=M R T i$

A solution inside the bulb is separated from pure solvent in the beaker by a semipermeable membrane.

Net passage of solvent from the beaker through the membrane occurs, and the liquid in the tube rises until an equilibrium is reached.

Osmosis and Osmotic Pressure

Calculate the osmotic pressure of a 1.00 M glucose solution in water at 300 K . (glucose is non electrolyte - does not dissociate into ions, $i=1$)

$$
\Pi=\mathrm{M} R T i=1.00 \frac{\mathrm{~mol}}{\mathrm{~L}} \times 0.08206 \frac{\mathrm{~L} \mathrm{~atm}}{\mathrm{~K} \mathrm{~mol}} \times 300 \mathrm{~K}=24.6 \mathrm{~atm}
$$

HW 12.9: Osmosis and Osmotic Pressure

What is the osmotic pressure of an intravenous solution prepared by dissolving 50.0 g of dextrose $\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\right)(\mathrm{FM}$ dextrose $=180.18 \mathrm{~g} / \mathrm{mol}$) in enough water to make 1.00 L of solution. Body temperature is $37.0^{\circ} \mathrm{C}$. $R=0.08206 \mathrm{~L} \mathrm{~atm} /(\mathrm{mol} \mathrm{K})$

$$
\Pi=\mathrm{M} R T i
$$

```
End class 2/10
Monday A section
End class 2/11
Tuesday C section
```


HW 12.9: Osmosis and Osmotic Pressure

What is the osmotic pressure of an intravenous solution prepared by dissolving 50.0 g of dextrose $\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\right)$ (FM dextrose $=180.18 \mathrm{~g} / \mathrm{mol})$ in enough water to make 1.00 L of solution. Body temperature is $37.0^{\circ} \mathrm{C}$.

$$
\Pi=\mathrm{M} R T i
$$

$M=\frac{50.0 \mathrm{~g} \text { dextrose }}{1.00 \mathrm{~L} \text { soln }} \times \frac{\text { mol dextrose }}{180.18 \mathrm{~g} \text { dextrose }}=0.278 \mathrm{M}$ dextrose
$\mathrm{T}=37.0^{\circ} \mathrm{C}+273.15=310.15 \mathrm{~K}$
$\mathrm{i}=1$, dextrose is a non electrolyte

End class 2/10
 Monday, A section

$\Pi=\underset{\text { dextrose }}{0.278 \mathrm{M}} \times 0.08206 \frac{\mathrm{~L} \mathrm{~atm}}{\mathrm{~K} \mathrm{~mol}} \times 310.15 \mathrm{~K} \times 1=$
$\Pi=7.08 \mathrm{~atm}$

Fractional Distillation of Liquid Mixtures Syllabus: Leave out, NOT RESPONSIBLE on test

The mixture of benzene and toluene boils at $92.2^{\circ} \mathrm{C}(365.3 \mathrm{~K})$ at atmospheric pressure, intermediate between the boiling points of the two pure liquids.

