

Lecture Presentation

Chapter 13 Chemical Kinetics

$$
\begin{aligned}
& \text { 13.1, 13.3, 13.4, 13.6, } \\
& \text { 13.9, 13.11, 13.14, } \\
& \text { 13.15, 13.17, 13.23, } \\
& \text { 13.25, 13.31, 13.56, } \\
& 13.58,13.78
\end{aligned}
$$

John E. McMurry Robert C. Fay

Reaction Rates

Chemical Kinetics: The area of chemistry concerned with reaction rates and the sequence of steps by which reactions occur

Reaction Rate: Either the increase in the concentration of a product per unit time or the decrease in the concentration of a reactant per unit time (how fast does the reaction go ?)

Reaction Rates

TABLE 13.1 Concentrations as a Function of Time at $55^{\circ} \mathrm{C}$ for the Reaction $2 \mathrm{~N}_{2} \mathrm{O}_{5}(\mathrm{~g}) \longrightarrow 4 \mathrm{NO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})$

	Concentration (M)		
Time (s)	$\mathbf{N}_{2} \mathbf{O}_{5}$	$\mathbf{N O}_{2}$	\mathbf{O}_{2}
0	0.0200	0	0
100	0.0169	0.0063	0.0016
200	0.0142	0.0115	0.0029
300	0.0120	0.0160	0.0040
400	0.0101	0.0197	0.0049
500	0.0086	0.0229	0.0057
600	0.0072	0.0256	0.0064
700	0.0061	0.0278	0.0070

Note that the concentrations of NO_{2} and O_{2} increase as the concentration of $\mathrm{N}_{2} \mathrm{O}_{5}$ decreases.

$$
2 \mathrm{~N}_{2} \mathrm{O}_{5}(g) \longrightarrow 4 \mathrm{NO}_{2}(g)+\mathrm{O}_{2}(g)
$$

Rate of decomposition of $\mathrm{N}_{2} \mathrm{O}_{5}$: Reactant disappearing with time

$$
\begin{aligned}
\frac{\Delta\left[\mathrm{N}_{2} \mathrm{O}_{5}\right]}{\Delta t} & =\frac{-(0.0101 \mathrm{M}-0.0120 \mathrm{M})}{(400 \mathrm{~s}-300 \mathrm{~s})} \\
& =-1.9 \times 10^{-5} \frac{\mathrm{M}}{\mathrm{~s}}
\end{aligned}
$$

Reaction Rates

General Reaction:

$$
a \mathrm{~A}+b \mathrm{~B} \longrightarrow d \mathrm{D}+e \mathrm{E}
$$

$$
\text { rate }=\begin{array}{ll}
\begin{array}{|l|}
\hline-\frac{1}{a} \frac{\Delta[\mathrm{~A}]}{\Delta t}=-\frac{1}{b} \frac{\Delta[\mathrm{~B}]}{\Delta t} \\
\begin{array}{l}
\text { disappearing reactant } \\
\text { (negative sign) }
\end{array}
\end{array} & \begin{array}{l}
\frac{1}{d} \frac{\Delta[\mathrm{D}]}{\Delta t}=\frac{1}{e} \frac{\Delta[\mathrm{E}]}{\Delta t} \\
\text { appearing product } \\
\text { (positive sign) }
\end{array} \\
\hline
\end{array}
$$

reaction: $\quad 2 \mathrm{~N}_{2} \mathrm{O}_{5}(g) \longrightarrow 4 \mathrm{NO}_{2}(g)+\mathrm{O}_{2}(g)$

$$
\begin{aligned}
\text { rate }= & \begin{array}{|l}
-\frac{1}{2} \frac{\Delta\left[\mathrm{~N}_{2} \mathrm{O}_{5}\right]}{\Delta t}=\frac{1}{4} \frac{\Delta\left[\mathrm{NO}_{2}\right]}{\Delta t}=\frac{\Delta\left[\mathrm{O}_{2}\right]}{\Delta t} \\
\\
\begin{array}{l}
\text { disappearing } \\
\text { reactant }
\end{array}
\end{array} \frac{\text { appearing product }}{}
\end{aligned}
$$

Reaction Rates - rate changes w time

$2 \mathrm{~N}_{2} \mathrm{O}_{5}(g) \longrightarrow 4 \mathrm{NO}_{2}(g)+\mathrm{O}_{2}(g)$

The slope of the tangent at time t is defined as the instantaneous rate at that particular time. The initial rate is the slope of the tangent to the curve at $t=0$.

Reaction Rates

General Reaction: $\quad a A+b B \longrightarrow d D+e E$

$$
\text { rate }=-\frac{1}{a} \frac{\Delta[\mathrm{~A}]}{\Delta t}=-\frac{1}{b} \frac{\Delta[\mathrm{~B}]}{\Delta t}=\frac{1}{d} \frac{\Delta[\mathrm{D}]}{\Delta t}=\frac{1}{e} \frac{\Delta[\mathrm{E}]}{\Delta t}
$$

Given a balanced chemical reaction, if you know the rate of one component, can get all others from stoichiometry

For the reaction shown, if the $-\Delta\left[\mathrm{I}^{-}\right] / \Delta \mathrm{t}=4.8 \times 10^{-4} \mathrm{M} / \mathrm{s}$ (a) what is the value of the $\Delta\left[\mathrm{I}_{3}{ }^{-}\right] / \Delta \mathrm{t}$ during the same time ?
$3 \mathrm{I}-(\mathrm{aq})+\mathrm{H}_{3} \mathrm{AsO}_{4}(\mathrm{aq})+2 \mathrm{H}^{+}(\mathrm{aq}) \rightarrow \mathrm{I}_{3}^{-}(\mathrm{aq})+\mathrm{H}_{3} \mathrm{AsO}_{3}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
$\frac{-1 \Delta\left[\mathrm{I}^{-}\right]}{3 \Delta \mathrm{t}}=\frac{\Delta\left[\mathrm{I}_{3}^{-}\right]}{\Delta \mathrm{t}}=-1 / 3\left(4.8 \times 10^{-4} \mathrm{M} / \mathrm{s}\right)=1.6 \times 10^{-4} \mathrm{M} / \mathrm{s}$

HW13.1: Reaction Rates
General Reaction: $\quad a A+b B \longrightarrow d D+e E$
rate $=-\frac{1}{a} \frac{\Delta[\mathrm{~A}]}{\Delta t}=-\frac{1}{b} \frac{\Delta[\mathrm{~B}]}{\Delta t}=\frac{1}{d} \frac{\Delta[\mathrm{D}]}{\Delta t}=\frac{1}{e} \frac{\Delta[\mathrm{E}]}{\Delta t}$
$3 \mathrm{I}^{-}(\mathrm{aq})+\mathrm{H}_{3} \mathrm{AsO}_{4}(\mathrm{aq})+2 \mathrm{H}^{+}(\mathrm{aq}) \rightarrow \mathrm{I}_{3}^{-}(\mathrm{aq})+\mathrm{H}_{3} \mathrm{AsO}_{3}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
(b) What is the value of the $\Delta\left[\mathrm{H}^{+}\right] / \Delta \mathrm{t}$? Given $\Delta\left[\mathrm{I}_{3}^{-}\right] / \Delta \mathrm{t}=$ $1.6 \times 10^{-4} \mathrm{M} / \mathrm{s}$

General Reaction: $\quad a \mathrm{~A}+b \mathrm{~B} \longrightarrow d \mathrm{D}+e \mathrm{E}$

$$
\text { rate }=-\frac{1}{a} \frac{\Delta[\mathrm{~A}]}{\Delta t}=-\frac{1}{b} \frac{\Delta[\mathrm{~B}]}{\Delta t}=\frac{1}{d} \frac{\Delta[\mathrm{D}]}{\Delta t}=\frac{1}{e} \frac{\Delta[\mathrm{E}]}{\Delta t}
$$

$3 \mathrm{I}^{-}(\mathrm{aq})+\mathrm{H}_{3} \mathrm{AsO}_{4}(\mathrm{aq})+2 \mathrm{H}^{+}(\mathrm{aq}) \rightarrow \mathrm{I}_{3}^{-}(\mathrm{aq})+\mathrm{H}_{3} \mathrm{AsO}_{3}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
(b) What is the value of the $\Delta\left[\mathrm{H}^{+}\right] / \Delta \mathrm{t}$? Given $\Delta\left[\mathrm{I}_{3}{ }^{-}\right] / \Delta \mathrm{t}=$ $1.6 \times 10^{-4} \mathrm{M} / \mathrm{s}$
$=\frac{\Delta\left[\mathrm{I}_{3}{ }^{-}\right]}{\Delta \mathrm{t}}=1.6 \times 10^{-4} \mathrm{M} / \mathrm{s}=\frac{-1 \Delta\left[\mathrm{H}^{+}\right]}{2 \Delta \mathrm{t}}$
End 2/12 Wed section A section

$$
\underline{\Delta\left[\mathrm{H}^{+}\right]}=-2 * 1.6 \times 10^{-4} \mathrm{M} / \mathrm{s}=-3.2 \times 10^{-4} \mathrm{M} / \mathrm{s}
$$

END QUIZ 4 END TEST 2

Rate Laws and Reaction Order

Rate Law: An equation that shows the dependence of the reaction rate on the concentration of each reactant
$a \mathrm{~A}+b \mathrm{~B} \longrightarrow$ products
rate $\alpha[\mathrm{A}]^{m}[\mathrm{~B}]^{n}$
rate $=k[A]^{m}[B]^{n}$
k is the rate constant.

$$
\mathrm{m}, \mathrm{n} \neq \mathrm{a}, \mathrm{~b}
$$

Rate Laws and Reaction Order

The values of the exponents in the rate law must be determined by experiment; they cannot be deduced from the stoichiometry of the reaction.

TABIE 13.2 Bananced Chemical Equations and Experimentally Determined Rate Laws for Some Reactions

Reaction*

$\mathrm{HCO}_{2} \mathrm{H}\left(\mathrm{a}_{(1)}\right)+\mathrm{Bi}_{2}(a) \rightarrow 2 \mathrm{H}^{+}\left(a_{q}\right)+2 \mathrm{Br}^{-}\left(a_{q}\right)+\mathrm{CO}_{2}(g)$
$\mathrm{BrO}_{3}^{-}(a)+5 \mathrm{Br}^{-}(a)+6 \mathrm{H}^{+}(a q) \rightarrow 3 \mathrm{Bi}_{2}(a)+3 \mathrm{H}_{2}(\mathrm{l})$
$\mathrm{H}_{2}(\mathrm{~g})+\mathrm{L}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{H}(\mathrm{g})$

Rate Law

$$
\begin{aligned}
& \text { Rade }=k \mid\left[B_{[2}\right]_{1}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Rate } \left.=\text { K } H_{2}\right][\text { [L] }
\end{aligned}
$$

In general, the exponents in the rate law are not the same as the stochiometric coefficients in the balanced chemical equation for the reaction.
*In the firstreaction, "(solm)" denotes a nonaquecous solution.

Experimental Determination of a Rate Law (Method of Initial Rates)
 $$
2 \mathrm{NO}(g)+\mathrm{O}_{2}(g) \longrightarrow 2 \mathrm{NO}_{2}(g)
$$

rate $=k[\mathrm{NO}]^{m}\left[\mathrm{O}_{2}\right]^{n} \quad(\mathrm{~m}$ and $\mathrm{n} \neq$ coefficients of reaction $\mathrm{a}, \mathrm{b})$
Compare the initial rates to the changes in initial concentrations.
TABLE 13.3 Initial Concentration and Rate Data for the Reaction $2 \mathrm{NO}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{NO}_{2}(\mathrm{~g})$

Experiment	Initial [NO]	Initial $\left[\mathbf{O}_{2}\right]$	$\mathbf{(M / s)}$
1	0.015	0.015	0.024
2	0.030	0.015	0.096
3	0.015	0.030	0.048
4	0.030	0.030	0.192

Experimental Determination of a Rate Law $2 \mathrm{NO}(g)+\mathrm{O}_{2}(g) \longrightarrow 2 \mathrm{NO}_{2}(g) \quad$ rate $=k\left[\mathrm{NO}^{2}\left[\mathrm{O}_{2}\right]^{n}\right.$

The concentration of NO doubles, the concentration of O_{2} remains constant, and the rate quadruples.
rate $2 /$ rate $1=0.096 / 0.024=[0.030 / 0.015]^{\mathrm{m}}[0.015 / 0.015]^{\mathrm{n}}$

$$
4=[2]^{\mathrm{m}}[1]^{\mathrm{n}} \quad \rightarrow \quad 2^{m}=4 \quad m=2 \quad \begin{aligned}
& \text { End } 2 / 12 \text { Wed } \\
& \text { C section }
\end{aligned}
$$

TABLE 13.3 Initial Concentration and Rate Data for the Reaction $2 \mathrm{NO}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{NO}_{2}(\mathrm{~g})$

Experiment	Initial [NO]	Initial [O_{2}]	Initial Reaction Rate (M / s)
1	0.015	0.015	0.024
2	0.030	0.015	0.096
3	0.015	0.030	0.048
4	0.030	0.030	0.192

HW13.2: Experimental Determination of a Rate Law $2 \mathrm{NO}(g)+\mathrm{O}_{2}(g) \longrightarrow 2 \mathrm{NO}_{2}(g) \quad$ rate $=k[\mathrm{NO}]^{m}\left[\mathrm{O}_{2}\right]^{n}$

Given $\mathrm{m}=2$, what is n given the following chart.

TABLE 13.3 Initial Concentration and Rate Data for the Reaction $2 \mathrm{NO}(g)+\mathrm{O}_{2}(g) \longrightarrow 2 \mathrm{NO}_{2}(g)$

Experiment	Initial [NO]	Initial $\left[\mathbf{O}_{2}\right]$	Initial Reaction Rate $(\mathbf{M} / \mathbf{s})$
1	0.015	0.015	0.024
2	0.030	0.015	0.096
3	0.015	0.030	0.048
4	0.030	0.030	0.192

HW13.2: Experimental Determination of a Rate Law $2 \mathrm{NO}(g)+\mathrm{O}_{2}(g) \longrightarrow 2 \mathrm{NO}_{2}(g) \quad$ rate $=k[\mathrm{NO}]^{m}\left[\mathrm{O}_{2}\right]^{\mathrm{n}}$

Given $\mathrm{m}=2$, what is n given the following chart.

TABLE 13.3 Initial Concentration and Rate Data for the Reaction $2 \mathrm{NO}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{NO}_{2}(\mathrm{~g})$

Experiment	Initial [NO]	Initial [O्2]

HW13.2: Experimental Determination of a Rate Law $2 \mathrm{NO}(g)+\mathrm{O}_{2}(g) \longrightarrow 2 \mathrm{NO}_{2}(g) \quad$ rate $=k[\mathrm{NO}]^{m}\left[\mathrm{O}_{2}\right]^{n}$

Given $\mathrm{m}=2$, what is n given the following chart. rate $3 /$ rate $1=0.048 / 0.024=[0.015 / 0.015]^{\mathrm{m}}[0.030 / 0.015]^{\mathrm{n}}$ $2=[1]^{\mathrm{m}}[2]^{\mathrm{n}} \rightarrow \mathrm{n}=1$
or

End 2/14 Friday A sect
rate $4 /$ rate $2=0.192 / 0.096=[0.030 / 0.030]^{\mathrm{m}}[0.030 / 0.015]^{\mathrm{n}}$ $2=[1]^{\mathrm{m}}[2]^{\mathrm{n}} \rightarrow \mathrm{n}=1$

$$
2^{n}=2 \quad n=1
$$

TABLE 13.3 Initial Concentration and Rate Data for the Reaction $2 \mathrm{NO}(g)+\mathrm{O}_{2}(g) \longrightarrow 2 \mathrm{NO}_{2}(g)$

Experiment	Initial [NO]	Initial [(O2]	Initial Reaction Rate $\mathbf{(M / \mathbf { s })}$
1	0.015	0.015	0.024
2	0.030	0.015	0.096
3	0.015	0.030	0.048
4	0.030	0.030	0.192

Experimental Determination of a Rate Law

$$
\begin{gathered}
2 \mathrm{NO}(g)+\mathrm{O}_{2}(g) \longrightarrow 2 \mathrm{NO}_{2}(g) \\
\text { rate }=k\left[\mathrm{NO}^{2}\left[\mathrm{O}_{2}\right]\right.
\end{gathered}
$$

Reaction Order With Respect to a Reactant

- NO: second-order
- O_{2} : first-order

Overall Reaction Order

- $2+1=3$ (third-order)

Order for heterogenous reactant/products zero like gas in a reaction in solution or
$\mathrm{H}_{2} \mathrm{O}(\mathrm{I})$ in a reaction in water solution

HW 13.3: Experimental Determination of a Rate Law

Given the following experimentally determined rate law: what is the overall order of the reaction? Write down the overall order in the blank provided.
(a) Rate $=\mathrm{k}[\mathrm{A}][\mathrm{B}]^{2}$
(b) Rate $=\mathrm{k}\left[\mathrm{BrO}_{3}^{-}\right]\left[\mathrm{Br}^{-}\right]\left[\mathrm{H}^{+}\right]^{2}$
(c) Rate $=\mathrm{k}[\mathrm{A}]^{2}$

HW 13.3: Experimental Determination of a Rate Law

Given the following experimentally determined rate law: what is the overall order of the reaction?
(a) Rate $=\mathrm{k}[\mathrm{A}][\mathrm{B}]^{2} \quad \underline{3}$
(b) Rate $=\mathrm{k}\left[\mathrm{BrO}_{3}^{-}\right]\left[\mathrm{Br}{ }^{-}\right]\left[\mathrm{H}^{+}\right]^{2}$

End 2/14
Friday C section
(c) Rate $=\mathrm{k}[\mathrm{A}]^{2}$

2

Note additional questions not in HW:
Order of [B] in (a) is? 2
Order of [A] in (a) is? 1
Order of [A] in (c) is ? 2

Experimental Determination of a Rate Law (can get value of k if know rate law)

$$
\begin{gathered}
2 \mathrm{NO}(g)+\mathrm{O}_{2}(g) \longrightarrow 2 \mathrm{NO}_{2}(g) \\
\text { rate }=k\left[\mathrm{NO}^{2}\left[\mathrm{O}_{2}\right]\right.
\end{gathered}
$$

Units of k for this third-order reaction:

$$
k=\frac{\text { rate }}{\left[\mathrm{NO}^{2}\left[\mathrm{O}_{2}\right]\right.}=\frac{\frac{\mathrm{M}}{\mathrm{~s}}}{\left(\mathrm{M}^{2}\right)(\mathrm{M})}=\frac{1}{\mathrm{M}^{2} \mathrm{~s}}
$$

To get k .
(a) Get order (m, n) of rate law experimentally.
(b) use any one experimental data to calculate k (watch the units)

Experimental Determination of a Rate Law

$2 \mathrm{NO}(g)+\mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{NO}_{2}(\mathrm{~g}) \quad$ rate $=k\left[\mathrm{NO}^{2}\left[\mathrm{O}_{2}\right]\right.$
Experiment 3 (from chart 13.3) solving for k
$0.048 \mathrm{M} / \mathrm{s}=\mathrm{k}[0.015 \mathrm{M}]^{2}[0.030 \mathrm{M}]$
$\mathrm{k}=\frac{0.048}{[0.015]^{2}[0.030]}$
$\mathrm{k}=\frac{0.048 \mathrm{M} / \mathrm{s}}{6.75 \times 10^{-6} \mathrm{M}^{3}}$
$\mathrm{k}=7.1 \times 10^{3} /\left(\mathrm{M}^{2} . \mathrm{s}\right)$

(integrated rate law - summary of next few slides)

TABLE 13.4 Characteristics of Zeroth-, First-, and Second-Order Reactions of the Type A \rightarrow Products

	Zeroth-Order	First-Order	Second-Order
Rate law	$-\frac{\Delta[\mathrm{A}]}{\Delta t}=k$	$-\frac{\Delta[\mathrm{A}]}{\Delta t}=k[\mathrm{~A}]$	$-\frac{\Delta[\mathrm{A}]}{\Delta t}=k[\mathrm{~A}]^{2}$
Integrated Rate Law	$[\mathrm{A}]_{t}=-k t+[\mathrm{A}]_{0}$	$\ln [\mathrm{~A}]_{t}=-k t+\ln [\mathrm{A}]_{0}$	$\frac{1}{[\mathrm{~A}]_{t}}=k t+\frac{1}{[\mathrm{~A}]_{0}}$
Linear graph	$[\mathrm{A}]$ versus t	$\ln [\mathrm{~A}]$ versus t	$\frac{1}{[\mathrm{~A}]}$ versus t
$\mathbf{y}=\mathbf{m X}+\mathbf{b}$	$[\mathrm{A}]_{0}$	Slope $=-k$	$\ln [\mathrm{~A}]_{0}$
eqn Of line	$[\mathrm{A}]$		$\frac{1}{[\mathrm{~A}]}$

Graphical

$$
k=-(\text { Slope })
$$

$k=-($ Slope $)$
$k=$ Slope

Half-life

$$
\begin{array}{ll}
t_{1 / 2}=\frac{[\mathrm{A}]_{0}}{2 k} & t_{1 / 2}=\frac{0.693}{k} \\
\text { (not constant) } & \text { (constant) }
\end{array}
$$

$$
t_{1 / 2}=\frac{1}{k[\mathrm{~A}]_{0}}
$$

(not constant)

Zeroth-Order Reactions (integrated rate law)

For a zeroth-order reaction, the rate is independent of the concentration of the reactant.

$$
\begin{gathered}
\mathrm{A} \longrightarrow \text { product(s) } \\
{\text { rate }=k[\mathrm{~A}]^{0}=\mathrm{k}}^{-\frac{\Delta[\mathrm{A}]}{\Delta t}=k}
\end{gathered}
$$

Calculus can be used to derive an integrated rate law.

$$
\begin{gathered}
{[\mathrm{A}]_{t}=-k t+[\mathrm{A}]_{0}} \\
y=m x+b
\end{gathered} \begin{cases}{[\mathrm{~A}]_{t}} & \text { concentration of } \mathrm{A} \text { at tim } \\
{[\mathrm{A}]_{0}} & \text { initial concentration of } \mathrm{A}\end{cases}
$$

Order for heterogenous reactant/products zero like gas in a reaction in solution or $\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$ in a reaction in water solution

Zeroth-Order Reactions - uncommon What kind of reaction would have rate not dependent on concentration of reactants?

$2 \mathrm{NH}_{3}(g) \xrightarrow[\text { Pt catalyst }]{1130 \mathrm{~K}} \mathrm{~N}_{2}(g)+3 \mathrm{H}_{2}(g) \quad$ rate $=k\left[\mathrm{NH}_{3}\right]^{0}=k$

Most of the NH_{3} molecules are in the gas phase above the surface and are unable to react.

As NH_{3} molecules on the surface decompose, they are replaced by molecules from the gas phase, so the number of NH_{3} molecules on the surface remains constant.

Because only the NH_{3} molecules on the surface react under these conditions, the reaction rate is independent of the total concentration of NH_{3}.

Integrated Rate Law for a First-Order Reaction

$$
\begin{gathered}
\mathrm{A} \longrightarrow \operatorname{product}(\mathrm{~s}) \\
\text { rate }=k[\mathrm{~A}] \quad-\frac{\Delta[\mathrm{A}]}{\Delta t}=k[\mathrm{~A}]
\end{gathered}
$$

Calculus can be used to derive an integrated rate law.

$$
\begin{aligned}
& \qquad \ln \left(\frac{[\mathrm{A}]_{t}}{[\mathrm{~A}]_{0}}\right)=-k t\left\{\begin{array}{cc}
{[\mathrm{A}]_{t}} & \text { concentration of } \mathrm{A} \text { at time } t \\
{[\mathrm{~A}]_{0}} & \text { initial concentration of } \mathrm{A}
\end{array}\right. \\
& \text { Using: } \ln \left(\frac{\mathrm{x}}{\mathrm{y}}\right)=\ln (x)-\ln (y) \quad \begin{array}{cc}
\ln [\mathrm{A}]_{t}=-\mathbf{k} t+\ln [\mathrm{A}]_{0} \\
\mathrm{y}=\mathrm{mx}+\mathrm{b}
\end{array}
\end{aligned}
$$

Integrated Rate Law for a First-Order Reaction

$$
\begin{gathered}
2 \mathrm{~N}_{2} \mathrm{O}_{5}(g) \longrightarrow 4 \mathrm{NO}_{2}(g)+\mathrm{O}_{2}(g) \\
\text { rate }=k\left[\mathrm{~N}_{2} \mathrm{O}_{5}\right]
\end{gathered}
$$

X		y
Time (s)	$\left[\mathrm{N}_{2} \mathrm{O}_{5}\right]$	$\ln \left[\mathrm{N}_{2} \mathrm{O}_{5}\right]$
0	0.0200	-3.912
100	0.0169	-4.080
200	0.0142	-4.255
300	0.0120	-4.423
400	0.0101	-4.595
500	0.0086	-4.756
600	0.0072	-4.934
700	0.0061	-5.099

$\ln [A]_{t}=-\mathrm{kt}+\operatorname{In}[\mathrm{A}]_{0}$

$$
y=m x+b
$$

Half-Life of a First-Order Reaction

Half-Life: The time required for the reactant concentration to drop to one-half of its initial value

$$
\begin{aligned}
& \mathrm{A} \longrightarrow \text { product(s) } \\
& \text { rate }=k[A] \\
& \ln \left(\frac{[\mathrm{A}]_{t}}{[\mathrm{~A}]_{0}}\right)=-k t\left\{\begin{array}{l}
t=\boldsymbol{t}_{1 / 2} \\
{[\mathrm{~A}]_{\boldsymbol{t}_{1 / 2}}=\frac{[\mathrm{A}]_{0}}{2}}
\end{array}\right. \\
& \ln \left(\frac{1}{2}\right)=-k t_{1 / 2} \text { or } t_{1 / 2}=\frac{0.693}{k} \quad \text { Half Life }
\end{aligned}
$$

Half-Life of a First-Order Reaction

$$
t_{1 / 2}=\frac{0.693}{k}
$$

For a first-order reaction, the half-life is independent of the initial concentration.

Each successive half-life is an equal period of time.

HW 13.4: Integrated Rate Law for a First-Order Reaction

The following reaction is first order in $\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Br}^{2+}$ with an initial concentration of 0.100 M . The rate constant $\mathrm{k}=6.3 \times 10^{-6} \mathrm{~s}^{-1}$.
$\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Br}^{2+}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5}\left(\mathrm{H}_{2} \mathrm{O}\right)^{3+}(\mathrm{aq})+\mathrm{Br}(\mathrm{aq})$
(a) What is the molarity of the $\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Br}^{2+}$ (aq) after 10.0 hours?

$$
\ln [A]_{t}=-k t+\ln [A]_{0} \quad \ln \neq \log
$$

HW 13.4: Integrated Rate Law for a First-Order Reaction

The following reaction is first order in $\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Br}^{2+}$ with an initial concentration of 0.100 M . The rate constant $\mathrm{k}=6.3 \times 10^{-6} \mathrm{~s}^{-1}$.
$\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Br}^{2+}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5}\left(\mathrm{H}_{2} \mathrm{O}\right)^{3+}(\mathrm{aq})+\mathrm{Br}(\mathrm{aq})$
(a) What is the molarity of the $\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Br}^{2+}$ (aq) after 10.0 hours?

$$
\ln [\mathrm{A}]_{t}=-k t+\ln [\mathrm{A}]_{0} \quad \ln \neq \log
$$

$\ln \left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Br}^{2+}\right]=-\left(6.3 \times 10^{-6} \mathrm{~s}^{-1}\right)(10.0$ hours $)+\ln [0.100 \mathrm{M}]$
$10.0 \mathrm{hrs} \times 60 \mathrm{~min} / \mathrm{hr} \times 60 \mathrm{~s} / \mathrm{min}=36,000 \mathrm{~s}$
$\ln \left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Br}^{2+}\right]=-\left(6.3 \times 10^{-6} \mathrm{~s}^{-1}\right)(36,000 \mathrm{~s})+(-2.303 \mathrm{M})$
$\ln \left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Br}^{2+}\right]=-0.2268-2.303=-2.5298$
$\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Br}^{2+}\right]=\mathrm{e}^{-2.5298}($ antilog for e based $\log)=0.080 \mathrm{M}$

HW 13.5: Integrated Rate Law for a First-Order Reaction

The following reaction is first order in $\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Br}^{2+}$ with an initial concentration of 0.100 M . The rate constant $\mathrm{k}=6.3 \times 10^{-6} \mathrm{~s}^{-1}$.
$\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Br}^{2+}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5}\left(\mathrm{H}_{2} \mathrm{O}\right)^{3+}(\mathrm{aq})+\mathrm{Br}(\mathrm{aq})$

$$
t_{1 / 2}=\frac{0.693}{k}
$$

(b) What is the half life time?

HW 13.5: Integrated Rate Law for a First-Order Reaction

The following reaction is first order in $\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Br}^{2+}$ with an initial concentration of 0.100 M . The rate constant $\mathrm{k}=6.3 \times 10^{-6} \mathrm{~s}^{-1}$.
$\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Br}^{2+}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5}\left(\mathrm{H}_{2} \mathrm{O}\right)^{3+}(\mathrm{aq})+\mathrm{Br}(\mathrm{aq})$

$$
t_{1 / 2}=\frac{0.693}{k}
$$

(b) What is the half life time?

End 2/21 Friday section A

$t_{1 / 2}=0.693 / 6.3 \times 10^{-6} \mathrm{~s}^{-1}=110,000 \mathrm{sec}$
$t_{1 / 2}=110,000 \sec \times 1 \mathrm{~min} / 60 \sec \times 1 \mathrm{~h} / 60 \mathrm{~min}=31$ hours

Second-Order Reactions

$A \longrightarrow$ product(s)

$$
\text { rate }=k[\mathrm{~A}]^{2} \quad-\frac{\Delta[\mathrm{A}]}{\Delta t}=k[\mathrm{~A}]^{2}
$$

Calculus can be used to derive an integrated rate law.

$$
\begin{gathered}
\frac{1}{[\mathrm{~A}]_{t}}=k t+\frac{1}{[\mathrm{~A}]_{0}} \\
y=m x+b
\end{gathered}
$$

$[\mathrm{A}]_{t} \quad$ concentration of A at time t
$[A]_{0} \quad$ initial concentration of A

Second-Order Reactions

$$
2 \mathrm{NO}_{2}(g) \longrightarrow 2 \mathrm{NO}(g)+\mathrm{O}_{2}(g)
$$

Calculate the slope:

$$
\begin{gathered}
\frac{(340-150) \frac{1}{\mathrm{M}}}{400 \mathrm{~s}-50 \mathrm{~s}}=0.54 \frac{1}{\mathrm{M} \mathrm{~s}} \\
k=0.54 \frac{1}{\mathrm{Ms}} \\
\frac{1}{[\mathrm{~A}]_{t}}=k t+\frac{1}{[\mathrm{~A}]_{0}} \\
y=m x+b
\end{gathered}
$$

Second-Order Reactions

$$
t_{1 / 2}=\frac{1}{k[\mathrm{~A}]_{0}}
$$

For a second-order reaction, the half-life is dependent on the initial concentration.

Each successive half-life is twice as long as the preceding one.

Mistake on textbook powerpoint wrong figure should be fig 13.9

HW 13.6: Integrated Rate Law for a First-Order Reaction

For the following reaction what would you plot in order to get a linear plot. Assume that the reaction is first order. MC question

$$
\mathrm{SO}_{2} \mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})
$$

$$
\begin{array}{ll}
{[\mathrm{A}]_{t}=-k t+[\mathrm{A}]_{0}} & \text { zero order } \\
\ln [\mathrm{A}]_{t}=-\mathrm{k} t+\ln [\mathrm{A}]_{0} & \text { first order } \\
\frac{1}{[\mathrm{~A}]_{t}}=k t+\frac{1}{[\mathrm{~A}]_{0}} & \text { second order } \\
\mathrm{y}=\mathrm{mx}+\mathrm{b} & \text { generalized equation for a line }
\end{array}
$$

(a) $y=$ time
vs. $\mathrm{x}=\ln \left[\mathrm{SO}_{2} \mathrm{Cl}_{2}\right]$
(b) $\mathrm{y}=\ln \left[\mathrm{SO}_{2} \mathrm{Cl}_{2}\right]$ vs $\mathrm{x}=\mathrm{time}$
(c) $y=1 /\left[\mathrm{SO}_{2} \mathrm{Cl}_{2}\right] \quad$ vs. $\quad \mathrm{x}=$ time
(d) $y=\ln \left[\mathrm{SO}_{2} \mathrm{Cl}_{2}\right] \quad$ vs. $\quad \mathrm{x}=\mathrm{k}$

HW 13.6: Integrated Rate Law for a First-Order Reaction

For the following reaction what would you plot in order to get a linear plot. Assume that the reaction is first order.
$\mathrm{SO}_{2} \mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})$

$$
\begin{array}{ll}
{[\mathrm{A}]_{t}=-k t+[\mathrm{A}]_{0}} & \text { zero order } \\
\ln [\mathrm{A}]_{t}=-\mathrm{k} t+\ln [\mathrm{A}]_{0} & \text { first order } \\
\frac{1}{[\mathrm{~A}]_{t}}=k t+\frac{1}{[\mathrm{~A}]_{0}} & \text { second order } \\
\mathrm{y}=\mathrm{mx}+\mathrm{b} & \text { generalized equation for a line }
\end{array}
$$

(a) $y=$ time
vs. $\mathrm{x}=\ln \left[\mathrm{SO}_{2} \mathrm{Cl}_{2}\right]$
(b) $y=\ln \left[\mathrm{SO}_{2} \mathrm{Cl}_{2}\right]$ vs $\mathrm{x}=$ time
(c) $y=1 /\left[\mathrm{SO}_{2} \mathrm{Cl}_{2}\right] \quad$ vs. $\quad x=$ time
(d) $y=\ln \left[\mathrm{SO}_{2} \mathrm{Cl}_{2}\right] \quad$ vs. $\quad \mathrm{x}=\mathrm{k}$

(integrated rate law - summary of last few slides)

TABLE 13.4 Characteristics of Zeroth-, First-, and Second-Order Reactions of the Type A \rightarrow Products

	Zeroth-Order	First-Order	Second-Order
Rate law	$-\frac{\Delta[\mathrm{A}]}{\Delta t}=k$	$-\frac{\Delta[\mathrm{A}]}{\Delta t}=k[\mathrm{~A}]$	$-\frac{\Delta[\mathrm{A}]}{\Delta t}=k[\mathrm{~A}]^{2}$
Integrated Rate Law	$[\mathrm{A}]_{t}=-k t+[\mathrm{A}]_{0}$	$\ln [\mathrm{~A}]_{t}=-k t+\ln [\mathrm{A}]_{0}$	$\frac{1}{[\mathrm{~A}]_{t}}=k t+\frac{1}{[\mathrm{~A}]_{0}}$
Linear graph	$[\mathrm{A}]$ versus t	$\ln [\mathrm{~A}]$ versus t	$\frac{1}{[\mathrm{~A}]}$ versus t
$\mathbf{y}=\mathbf{m X}+\mathbf{b}$	$[\mathrm{A}]_{0}$	Slope $=-k$	$\ln [\mathrm{~A}]_{0}$
eqn Of line	$[\mathrm{A}]$		$\frac{1}{[\mathrm{~A}]}$

Graphical

$$
k=-(\text { Slope })
$$

$k=-($ Slope $)$
$k=$ Slope

Half-life

$$
\begin{array}{ll}
t_{1 / 2}=\frac{[\mathrm{A}]_{0}}{2 k} & t_{1 / 2}=\frac{0.693}{k} \\
\text { (not constant) } & \text { (constant) }
\end{array}
$$

$$
t_{1 / 2}=\frac{1}{k[\mathrm{~A}]_{0}}
$$

(not constant)

Reaction Rates and Temperature: The Arrhenius Equation

Typically, as the temperature increases, the rate of reaction increases.

$$
\begin{gathered}
2 \mathrm{~N}_{2} \mathrm{O}_{5}(g) \longrightarrow 4 \mathrm{NO}_{2}(g)+\mathrm{O}_{2}(g) \\
\text { rate }=k\left[\mathrm{~N}_{2} \mathrm{O}_{5}\right]
\end{gathered}
$$

The rate constant is dependent on temperature.

```
NOT RESPONSIBLE
Omit from departmental syllabus
omit sections 13.7, 13.8
```

End 2/21 Friday Section C

Reaction Mechanisms

Reaction Mechanism: A sequence of reaction steps that describes the pathway from reactants to products

Elementary Reaction (step): A single step in a reaction mechanism (NOT overall rxn)

Reaction Mechanisms

An elementary reaction describes an individual molecular event.

The overall reaction describes the reaction stoichiometry and is a summation of elementary reactions.

Reaction Mechanisms

Experimental evidence suggests that the reaction between NO_{2} and CO takes place by a two-step mechanism:
$\mathrm{NQ}_{2}(g)+\mathrm{NO}_{2}(g) \longrightarrow \mathrm{NO}(g)+\mathrm{NQ}_{3}(g)$ elementary reaction
$\mathrm{NO}_{3}(g)+\mathrm{CO}(g) \longrightarrow \mathrm{NQ}_{2}(g)+\mathrm{CO}_{2}(g)$ elementary reaction
$\mathrm{NO}_{2}(g)+\mathrm{CO}(g) \longrightarrow \mathrm{NO}(g)+\mathrm{CO}_{2}(g)$ overall reaction

Reaction Mechanisms

Experimental evidence suggests that the reaction between NO_{2} and CO takes place by a two-step mechanism:
$\mathrm{NO}_{2}(g)+\mathrm{NO}_{2}(g) \longrightarrow \mathrm{NO}(g)+\mathrm{NO}_{3}(g)$ elementary reaction
$\mathrm{NO}_{3}(g)+\mathrm{CO}(g) \longrightarrow \mathrm{NO}_{2}(g)+\mathrm{CO}_{2}(g)$ elementary reaction
$\mathrm{NO}_{2}(g)+\mathrm{CO}(g) \longrightarrow \mathrm{NO}(g)+\mathrm{CO}_{2}(g)$ overall reaction

A reactive intermediate is formed in one step and consumed in a subsequent step.

Reaction Mechanisms-Molecularity

Molecularity: A classification of an elementary reaction based on the number of molecules (or atoms) on the reactant side of the chemical equation

Reaction Mechanisms-Molecularity

Unimolecular Reaction

$$
\mathrm{O}_{3}{ }^{*}(g) \longrightarrow \mathrm{O}_{2}(g)+\mathrm{O}(g)
$$

Reaction Mechanisms-Molecularity

Bimolecular Reaction

$$
\mathrm{O}_{3}(g)+\mathrm{O}(g) \longrightarrow 2 \mathrm{O}_{2}(g)
$$

Reaction Mechanisms-Molecularity

Termolecular Reaction

$$
\mathrm{O}(g)+\mathrm{O}(g)+\mathrm{M}(g) \longrightarrow \mathrm{O}_{2}(g)+\mathrm{M}(g)
$$

Rate Laws for Elementary Reactions

The rate law for an elementary reaction follows directly from its molecularity because an elementary reaction is an individual molecular event.

Rate Laws for Elementary Reactions
 (reaction mechanism step) (if know elementary reaction mechanism step CAN write rate law directly from rxn)

Unimolecular Reaction

$$
\mathrm{O}_{3}{ }^{*}(g) \longrightarrow \mathrm{O}_{2}(g)+\mathrm{O}(g) \quad \text { rate }=k\left[\mathrm{O}_{3}\right]
$$

Bimolecular Reaction

$$
\mathrm{O}_{3}(g)+\mathrm{O}(g) \longrightarrow 2 \mathrm{O}_{2}(g) \quad \text { rate }=k\left[\mathrm{O}_{3}\right][\mathrm{O}]
$$

Termolecular Reaction

$$
\mathrm{O}(g)+\mathrm{O}(g)+\mathrm{M}(g) \longrightarrow \mathrm{O}_{2}(g)+\mathrm{M}(g) \quad \text { rate }=k[\mathrm{O}]^{2}[\mathrm{M}]
$$

Rate Laws for Elementary Reactions

Rate laws for elementary reactions is just the reactants by inspection $\{$ rate $=\mathrm{k}$ [all reactants, write as individual concentration] $\}$

TABLE 13.5 Rate Laws for Elementary Reactions

Elementary Reaction	Molecularity	Rate Law
$\mathrm{A} \rightarrow$ Products	Unimolecular	Rate $=k[\mathrm{~A}]$
$\mathrm{A}+\mathrm{A} \rightarrow$ Products	Bimolecular	Rate $=k[\mathrm{~A}]^{2}$
$\mathrm{~A}+\mathrm{B} \rightarrow$ Products	Bimolecular	Rate $=k[\mathrm{~A}][\mathrm{B}]$
$\mathrm{A}+\mathrm{A}+\mathrm{B} \rightarrow$ Products	Termolecular	Rate $=k[\mathrm{~A}]^{2}[\mathrm{~B}]$
$\mathrm{A}+\mathrm{B}+\mathrm{C} \rightarrow$ Products	Termolecular	Rate $=k[\mathrm{~A}][\mathrm{B}][\mathrm{C}]$

HW 13.7: Rate Laws for Elementary Reactions (reaction mechanism steps)

For the following elementary reactions (reaction mechanism steps) give the rate law and the molecularity of the reaction mechanism step (unimolecular, bimolecular, trimolecular, etc.)
(a) $\mathrm{CH}_{3} \mathrm{Br}+\mathrm{OH}^{-} \rightarrow \mathrm{Br}-+\mathrm{CH}_{3} \mathrm{OH}$
(b) $\mathrm{O}_{3} \rightarrow \mathrm{O}_{2}+\mathrm{O}$
(c) $\mathrm{H}_{2} \mathrm{O}_{2}+\mathrm{OH}^{-} \rightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{HO}_{2}$
(d) $\mathrm{NO}_{2}+\mathrm{F} \rightarrow \quad \mathrm{NO}_{2} \mathrm{~F}$
(e) $2 \mathrm{ClO} \rightarrow \mathrm{Cl}_{2} \mathrm{O}_{2}$

HW 13.7: Rate Laws for Elementary Reactions (reaction mechanism steps)

For the following elementary reactions (reaction mechanism steps) give the rate law and the molecularity of the reaction mechanism step (unimolecular, bimolecular, trimolecular, etc.)
(a) $\mathrm{CH}_{3} \mathrm{Br}+\mathrm{OH}^{-} \rightarrow \mathrm{Br}-+\mathrm{CH}_{3} \mathrm{OH}$
(b) $\mathrm{O}_{3} \rightarrow \mathrm{O}_{2}+\mathrm{O}$
(c) $\mathrm{H}_{2} \mathrm{O}_{2}+\mathrm{OH}^{-} \rightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{HO}_{2}$
(d) $\mathrm{NO}_{2}+\mathrm{F} \rightarrow \quad \mathrm{NO}_{2} \mathrm{~F}$
(e) $2 \mathrm{ClO} \rightarrow \mathrm{Cl}_{2} \mathrm{O}_{2}$

End 2/24 Monday A section
rate $=k\left[\mathrm{CH}_{3}-\mathrm{Br}\right]\left[\mathrm{OH}^{-}\right]$
bimolecular
$\underline{\text { rate }}=k\left[\mathrm{O}_{3}\right]$
unimolecular
$\underline{\text { rate }}=\mathrm{k}\left[\mathrm{H}_{2} \underline{\mathrm{O}}_{2}\right]\left[\mathrm{OH}^{-}\right]$, bimolecular
$\underline{\text { rate }}=\mathrm{k}\left[\mathrm{NO}_{2}\right][\mathrm{F}]$
bimolecular
$\underline{\text { rate }}=\mathrm{k}[\mathrm{ClO}]^{2}$
bimolecular

Rate-Determining Step: The slow step in a reaction mechanism since it acts as a bottleneck and limits the rate at which reactants can be converted to products (Slow step elementary reaction step determines rate law of overall reaction.)

To Determine rate law for overall reactions:

- Propose reaction mechanism elementary steps
- Compare experimental rate law with rate law suggested by proposed reaction mechanism.

Multistep Reactions with an Initial Slow Step

$$
\begin{aligned}
& \mathrm{NO}_{2}(g)+\mathrm{NO}_{2}(g) \xrightarrow{k_{1}} \mathrm{NO}(g)+\mathrm{NO}_{3}(g) \text { slow step } \\
& \mathrm{NO}_{3}(g)+\mathrm{CO}(g) \xrightarrow{k_{2}} \mathrm{NO}_{2}(g)+\mathrm{CO}_{2}(g) \text { fast step }
\end{aligned}
$$

$\mathrm{NO}_{2}(g)+\mathrm{CO}(g) \longrightarrow \mathrm{NO}(g)+\mathrm{CO}_{2}(g)$ overall reaction
Based on the slow step: rate $=\boldsymbol{k}_{1}\left[\mathrm{NO}_{2}\right]^{2}$

Catalysis

Catalyst: A substance that increases the rate of a reaction without itself being consumed in the reaction. A catalyst is used in one step and regenerated in a later step.
$\mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{aq})+\mathrm{I}^{1-}(\mathrm{aq}) \longrightarrow \mathrm{H}_{2} \mathrm{O}\left(\Lambda+\mathrm{IO}^{1-}(\mathrm{aq})\right.$ rate-determining step

$$
2 \mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{aq}) \longrightarrow 2 \mathrm{H}_{2} \mathrm{O}(\Lambda)+\mathrm{O}_{2}(g) \quad \text { overall reaction }
$$

Catalysis

Since the catalyst is involved in the rate determining step (slow step), it often appears in the rate law.

$$
\text { rate }=k\left[\mathrm{H}_{2} \mathrm{O}_{2}\right]\left[\mathrm{I}^{1-}\right]
$$

$\mathrm{H}_{2} \mathrm{O}_{2}(a q)+\mathrm{I}^{1-(a q)} \longrightarrow \mathrm{H}_{2} \mathrm{O}(\Lambda)+\mathrm{IO}^{1-}(a q) \begin{gathered}\text { rate-determining } \\ \text { step }\end{gathered}$
$\mathrm{H}_{2} \mathrm{O}_{2}(a q)+\mathrm{IO}^{1-}(a q) \longrightarrow \mathrm{H}_{2} \mathrm{O}(\Lambda)+\mathrm{O}_{2}(g)+\mathrm{I}^{1-}(a q)$ fast step

$$
2 \mathrm{H}_{2} \mathrm{O}_{2}(a q) \longrightarrow 2 \mathrm{H}_{2} \mathrm{O}(\Lambda)+\mathrm{O}_{2}(g) \quad \text { overall reaction }
$$

End class 2/24/20
Monday A section

Catalysis

The rate of decomposition of aqueous hydrogen peroxide can be monitored qualitatively by collecting the evolved oxygen gas in a balloon.

In the absence of a catalyst, little O_{2} is produced.
without catalyst

After addition of aqueous sodium iodide, by opening the stopcock to add NaI , the balloon rapidly inflates with O_{2}. with catalyst (I^{-})

Catalysis

*lower activation energy with catalyst
*often catalyst pathway does not have an intermediate so (a) is just one hill but lower activation energy

Catalysis

The activation energy for the catalyzed pathway (red curve) is lower than that for the uncatalyzed pathway (blue curve) by an amount ΔE_{a}.

Reaction progress \longrightarrow

END QUIZ 5

Homogeneous and Heterogeneous Catalysts

Homogeneous Catalyst: A catalyst that exists in the same phase as the reactants

Heterogeneous Catalyst: A catalyst that exists in a different phase from that of the reactants

Homogeneous and Heterogeneous Catalysts

heterogenous catalyst

(a) H_{2} and $\mathrm{C}_{2} \mathrm{H}_{4}$ are adsorbed on the metal surface.

(c) One H atom forms a bond to a C atom of the adsorbed $\mathrm{C}_{2} \mathrm{H}_{4}$ to give a metal-bonded $\mathrm{C}_{2} \mathrm{H}_{5}$ group. A second H atom bonds to the $\mathrm{C}_{2} \mathrm{H}_{5}$ group.

(b) The $\mathrm{H}-\mathrm{H}$ bond breaks as H -metal bonds form, and the H atoms move about on the surface.

(d) The resulting $\mathrm{C}_{2} \mathrm{H}_{6}$ molecule is desorbed from the surface.

Homogeneous and Heterogeneous Catalysts (not responsible for this slide)

TABLE 13.6 Some Heterogeneous Catalysts Used in Commercially Important Reactions

Reaction	Catalyst	Commercial Process	Product: Commercial Uses

