

Lecture Presentation

Chapter 15 Aqueous Equilibria: Acids and Bases

HW: 15.1, 15.2, 15.5, 15.11, 15.15, 15.16, 15.17, 15.19, 15.20, 15.23, 15.24, 15.25

> John E. McMurry Robert C. Fay

Acid-Base Concepts: The Brønsted-Lowry Theory

Arrhenius Acid: dissociates in water to produce hydrogen ions, H⁺

$$HA(aq) \rightleftharpoons H^+(aq) + A^-(aq)$$

Arrhenius Base: dissociates in water to produce hydroxide ions, OH⁻

 $MOH(aq) \rightleftharpoons M^+(aq) + OH^-(aq)$

Acid-Base Concepts: The Brønsted-Lowry Theory

Brønsted-Lowry Acid: can transfer hydrogen ions, H⁺. In other words, a proton donor

Brønsted-Lowry Base: can accept hydrogen ions, H⁺. In other words, a proton acceptor

Conjugate Acid-Base Pairs: Chemical species whose formulas differ only by one hydrogen ion, H⁺

Acid-Base Concepts: The Brønsted-Lowry Theory (proton donor / acceptor)

Acid-Dissociation Equilibrium

Acid-Base Concepts: The Brønsted-Lowry Theory (proton donor / acceptor)

Base-Dissociation Equilibrium

Acid Strength and Base Strength

Weak Acid: An acid that is only partially dissociated in water and is thus a weak electrolyte

Acid Strength and Base Strength

Should know strong & weak acids circled.

HW 15.1: Acid-Base Concepts: Arrhenius & Brønsted-Lowry Theory (conjugate acid/base)

Given the following equation of acid/base dissociation. Give the Acid/Conjugate Base, Base/Conjugate Acid pairs.

a. $H NO_3 + H_2O \rightarrow NO_3^- + H_3O^+$

Acid _____ Conjugate Base _____ Base _____ Conjugate Acid _____

b. $NH_3 + H_2O \rightarrow NH_4^+ + OH^-$

 Base ______ Conjugate Acid ______

 Acid ______ Conjugate Base ______

c. $H NO_3 + NaOH \rightarrow Na NO_3 + H_2O$

Acid _____ Conjugate Base _____ Base _____ Conjugate Acid _____

Do this HW by emailing the answer in the text of your email instead of taking a photo of your answer on paper.

HW 15.1: Acid-Base Concepts: Arrhenius & Brønsted-Lowry Theory (conjugate acid/base)

Given the following equation of acid/base dissociation. Give the Acid/Conjugate Base, Base/Conjugate Acid pairs.

 $H NO_3 + H_2O \rightarrow NO_3^- + H_3O^+$

Acid H NO₃ Conjugate Base NO₃⁻ Base H₂O Conjugate Acid H₃O⁺

$NH_3 + H_2O \rightarrow NH_4^+ + OH^-$

Base NH_3 Conjugate Acid NH_4^+ Acid H_2O Conjugate Base OH^-

$H NO_3 + NaOH \rightarrow Na NO_3 + H_2O$

Acid H NO₃ Conjugate Base NO₃ -Base NaOH Conjugate Acid H_2O

Do this HW by emailing the answer in the text of your email instead of taking a photo of your answer on paper.

Hydrated Protons and Hydronium Ions

$$HA(aq) \rightleftharpoons H^{+}(aq) + A^{-}(aq)$$

$$HA(aq) + H_{2}O \implies H_{3}O^{+}(aq) + A^{-}(aq)$$

Due to high reactivity of the hydrogen ion, it is actually hydrated by one or more water molecules.

$$[H(H_2O)_n]^+ \begin{cases} n = 1 & H_3O^+ \\ n = 2 & H_5O_2^+ \\ n = 3 & H_7O_3^+ \\ n = 4 & H_9O_4^+ \end{cases}$$

For our purposes, H^+ is equivalent to H_3O^+ .

K_w equilibrium is present for water with acid or base added.

Dissociation of Water: $2 H_2O(I) \implies H_3O^+(aq) + OH^-(aq)$

Ion-Product Constant for Water: $K_w = [H_3O^+][OH^-]$

at 25 °C: $[H_3O^+] = [OH^-] = 1.0 \times 10^{-7} M$

 $K_{w} = (1.0 \times 10^{-7})(1.0 \times 10^{-7}) = 1.0 \times 10^{-14}$

 Acidic:
 $[H_3O^+] > [OH^-]$

 Neutral:
 $[H_3O^+] = [OH^-]$

 Basic:
 $[H_3O^+] < [OH^-]$

pH = -log[$H_{3}O^{+}] [H_{3}O^{+}] = 10^{-pH}$ antilog
Acidic:	pH < 7
Neutral:	pH = 7
Basic:	pH > 7

$$K_{\rm w} = [{\rm H}_3{\rm O}^+][{\rm O}{\rm H}^-] = 1.0 \times 10^{-14}$$

$$[H_3O^+] = \frac{1.0 \times 10^{-14}}{[OH^-]} \qquad [OH^-] = \frac{1.0 \times 10^{-14}}{[H_3O^+]}$$

$$p(anything) = -log (anything)$$

$$pK_w = pH + pOH = 14$$

$$pH = 14 - pOH$$

$$pOH = 14 - pH$$

The hydronium ion concentration for lemon juice is approximately 0.0025 M. What is the pH when $[H_3O^+] = 0.0025 \text{ M}$?

Calculate the pH of an aqueous ammonia solution that has an OH⁻ concentration of 0.0019 M.

$$[H_{3}O^{+}] = \frac{1.0 \times 10^{-14}}{[OH^{1}-]} = \frac{1.0 \times 10^{-14}}{0.0019} = 5.3 \times 10^{-12} \text{ M}$$
$$pH = -\log(5.3 \times 10^{-12}) = 11.28$$

OR
$$pOH = -\log(0.0019) = -(-2.72)$$

pKw = 14 = pH + pOH (14 has infinite sig fig)

14 = pH + 2.72

pH = 11.28

Acid rain is a matter of serious concern because most species of fish die in waters having a pH lower than 4.5-5.0. Calculate [H₃O⁺] in a lake that has a pH of 4.5.

$$[H_{3}O^{+}] = 10^{-4.5} = 3 \times 10^{-5} M$$
$$pH = 4.5 = -\log [H_{3}O^{+}]$$
$$-4.5 = \log [H_{3}O^{+}]$$
$$[H_{3}O^{+}] = antilog (-4.5)$$

antilog = 10^x in most calculators

The pH Scale Equations

 $pH = -\log [H^+]$ $pOH = - \log [OH^{-}]$ $pK_w = -\log K_w$ $K_{w} = [H^+][OH^-] = 1 \times 10^{-14}$ $pK_w = pH + pOH = 14$

HW 15.2: The pH Scale

(a) What is the pH of a solution of $[H^+] = 2.3 \times 10^{-2}$ pH = $-\log [H^+]$

(b) What is the pOH of a solution of $[OH-] = 7.7 \times 10^{-3}$ pOH = - log $[OH^-]$

(c) What is the pH of the solution in (b) above ? pH + pOH = 14 End class 3/30 M A sect, end class 3/31T sect C

(d) What is the [H⁺] of the solution in (c) above ? [H⁺] = antilog (-pH)

Answer this HW by writing the text of the answer into your email instead of uploading photo.

HW 15.2: The pH Scale

(a) What is the pH of a solution of $[H^+] = 2.3 \times 10^{-2}$ pH = $-\log [H^+] = -\log(2.3 \times 10^{-2}) = -(-1.638) = 1.64$

(b) What is the pOH of a solution of $[OH-] = 7.7 \times 10^{-3}$ pOH = - log $[OH^-] = -log(7.7 \times 10^{-3}) = -(-2.11) - 2.11$

(c) What is the pH of the solution in (b) above ? pH + pOH = 14 pH + 2.11 = 14 pH = 11.9

(d) What is the [H⁺] of the solution in (c) above ? [H⁺] = antilog (-pH) = antilog(-11.9) = 1.26×10^{-12}

Answer this HW by writing the text of the answer into your email instead of uploading photo.

Measuring pH

Acid–Base Indicator: A substance that changes color in a specific pH range. Indicators exhibit pH-dependent color changes because they are weak acids and have different colors in their acid (HIn) and conjugate base (In⁻) forms.

> $HIn(aq) + H_2O(I) \rightleftharpoons H_3O^+(aq) + In^-(aq)$ Color A Color B

Measuring pH

The pH in Solutions of Strong Acids and Strong Bases

Just use concentration of strong acid or base bc dissociates completely.

What is the pH of a 0.025 M solution of HNO₃?

$$HNO_{3}(aq) + H_{2}O(l) \xrightarrow{100\%} H_{3}O^{+}(aq) + NO_{3}^{-}(aq)$$

Since HNO_3 is a strong acid, $[H_3O^+] = [HNO_3]$.

$$pH = -log([H_3O^+]) = -log(0.025) = (1.60)$$

The pH in Solutions of Strong Acids and Strong Bases

Just use concentration of strong acid or base bc dissociates completely.

What is the pH of a 0.025 M solution of NaOH? NaOH(aq) \longrightarrow Na⁺(aq) + OH⁻(aq)

Since NaOH is a strong base, $[OH^-] = [NaOH]$.

$$[H_{3}O^{+}] = \frac{1.0 \times 10^{-14}}{[OH^{-}]} = \frac{1.0 \times 10^{-14}}{0.025} = 4.0 \times 10^{-13} \text{ M}$$
$$pH = -\log([H_{3}O^{+}]) = -\log(4.0 \times 10^{-13}) = 12.40$$

HW 15.3: The pH in Solutions of Strong Acids and Strong Bases

Just use concentration of strong acid or base bc dissociates completely.

a. What is the pH of a 0.025 M solution of HCI?

b. What is the pH of a solution of 0.150 M solution of NaOH ?

Answer this HW by writing the text of the answer into your email instead of uploading photo.

Equilibria in Solutions of Weak Acids

 $HA(aq) + H_2O(l) \rightleftharpoons H_3O^+(aq) + A^-(aq)$ Acid-Dissociation Constant: $K_a = \frac{[H_3O^+][A^-]}{[HA]}$

For Weak Acids and Weak Bases – MUST USE K_a / K_b

TABLE 15.2 Acid-Dissociation Constants at 25 °C

	Acid	Molecular Formula	Structural Formula*	Ka	pK_a^{\dagger}
Stronger	Hydrochloric	HCl	H—Cl	$2 imes 10^{6}$	- 6.3
acid	Nitrous	HNO ₂	H - O - N = O	$4.5 imes10^{-4}$	3.35
	Hydrofluoric	HF	H—F	$3.5 imes 10^{-4}$	3.46
1			O II		
	Formic	HCO ₂ H	H−С̈−О− Н	$1.8 imes10^{-4}$	3.74
			HOCC		
	Ascorbic	$C_6H_8O_6$		$8.0 imes10^{-5}$	4.10
	(vitamin C)		Č~c		
			HO / \ H CH—CHOH		
			OH		
			O II		
	Acetic	CH ₃ CO ₂ H	$CH_3 - C - O - H$	$1.8 imes10^{-5}$	4.74
	Hypochlorous	HOCl	H-O-Cl	$3.5 imes 10^{-8}$	7.46
Weaker	Hydrocyanic	HCN	$H - C \equiv N$	$4.9 imes10^{-10}$	9.31
acid	Methanol	CH ₃ OH	$CH_3 - O - H$	$2.9 imes 10^{-16}$	15.54

* The proton that is transferred to water when the acid dissociates is shown in red. † $pK_a = -\log K_a$.

Equilibria in Solutions of Weak Acids

The pH of 0.250 M HF is 2.036. What are the values of K_a and p K_a for hydrofluoric acid?

 $HF(aq) + H_2O(l) \implies H_3O^+(aq) + F^-(aq)$

0.250	≈0	0
- <i>X</i>	+ <i>X</i>	+ <i>X</i>
0.250 – <i>x</i>	X	X

 $x = [H_3O^+] = 10^{-2.036} = 0.00920 \text{ M}$

Equilibria in Solutions of Weak Acids

$$K_{a} = \frac{[H_{3}O^{+}][F^{-}]}{[HF]}$$

$$[F^{-}] = [H_3O^+] = 0.00920 \text{ M}$$

$$[HF] = 0.250 - x = 0.250 - 0.00920 = 0.241 \text{ M}$$

$$K_{a} = \frac{[H_{3}O^{+}][F^{-}]}{[HF]} = \frac{(0.00920)(0.00920)}{0.241} = 3.51 \times 10^{-4}$$
$$pK_{a} = -\log(K_{a}) = -\log(3.51 \times 10^{-4}) = 3.455$$

HW 15.4: Calculating Equilibrium Concentrations of Weak Acids

Calculate the pH of a 0.10 M HCN solution. At 25 °C, $K_a = 4.9 \times 10^{-10}$.

 $HCN(aq) + H_2O(l) \Longrightarrow H_3O^+(aq) + CN^-(aq)$

$$K_{a} = \frac{[H_{3}O^{+}][CN^{-}]}{[HCN]}$$

Polyprotic Acids – omit section 15.11

$$H_{2}CO_{3}(aq) + H_{2}O(l) \rightleftharpoons H_{3}O^{+}(aq) + HCO_{3}^{-}(aq)$$
$$K_{a1} = \frac{[H_{3}O^{+}][HCO_{3}^{-}]}{[H_{2}CO_{3}]} = 4.3 \times 10^{-7}$$

$$HCO_3^{-}(aq) + H_2O(l) \Longrightarrow H_3O^{+}(aq) + CO_3^{2-}(aq)$$

$$K_{a2} = \frac{[H_3O^+][CO_3^{2-}]}{[HCO_3^{-}]} = 5.6 \times 10^{-11}$$

 $B(aq) + H_2O(I) \rightleftharpoons BH^+(aq) + OH^-(aq)$ Base Acid Acid Base **Base-Dissociation Constant**: $K_{b} = \frac{[BH^{+}][OH^{-}]}{[B]}$ $NH_3(aq) + H_2O(I) \rightleftharpoons NH_4^+(aq) + OH^-(aq)$ $K_{\rm b} = \frac{[\rm NH_4^+][\rm OH^-]}{[\rm NH_2]}$ End 4/1 Wed A sect

END QUIZ 7

QUIZ 7 ENDS HERE

TABLE 15.4 *K*_b Values for Some Weak Bases and *K*_a Values for Their Conjugate Acids at 25 °C

Base	Formula, B	K _b	Conjugate Acid, BH ⁺	Ka
Ammonia	NH ₃	$1.8 imes 10^{-5}$	$\mathrm{NH_4}^+$	$5.6 imes 10^{-10}$
Aniline	$C_6H_5NH_2$	4.3×10^{-10}	$C_6H_5NH_3^+$	$2.3 imes 10^{-5}$
Dimethylamine	$(CH_3)_2NH$	$5.4 imes 10^{-4}$	$(CH_3)_2NH_2^+$	$1.9 imes 10^{-11}$
Hydrazine	N_2H_4	$8.9 imes 10^{-7}$	$N_2H_5^+$	$1.1 imes 10^{-8}$
Hydroxylamine	NH ₂ OH	$9.1 imes 10^{-9}$	$\rm NH_3OH^+$	$1.1 imes 10^{-6}$
Methylamine	CH_3NH_2	3.7×10^{-4}	$\mathrm{CH_3NH_3}^+$	2.7×10^{-11}

Calculate the pH of a 0.40 M NH₃ solution. At 25 °C, $K_{\rm b} = 1.8 \times 10^{-5}$.

	2 ()		
0.40		0	≈0
- <i>X</i>		+ <i>X</i>	+ <i>X</i>
0.40 – x		X	X

 $NH_3(aq) + H_2O(l) \Longrightarrow NH_4^+(aq) + OH^-(aq)$

$$K_{\rm b} = \frac{[{\rm NH_4^+}][{\rm OH^-}]}{[{\rm NH_3}]}$$

$$1.8 \times 10^{-5} = \frac{(x)(x)}{(0.40 - x)} \approx \frac{x^2}{0.40}$$

End 4/1 Wed,
C section
$$x = [OH^{-}] = 0.0027 \text{ M}$$
$$[H_3O^{+}] = \frac{1.0 \times 10^{-14}}{0.0027} = 3.7 \times 10^{-12} \text{ M}$$
$$pH = -\log([H_3O^{+}]) = -\log(3.7 \times 10^{-12}) = 11.43$$