

Lecture Presentation

Chapter 15 Aqueous Equilibria: Acids and Bases

HW: 15.1, 15.2, 15.5, 15.11, 15.15, 15.16, 15.17, 15.19, 15.20, 15.23, 15.24, 15.25

John E. McMurry Robert C. Fay

Acid-Base Concepts: The Brønsted-Lowry Theory

Arrhenius Acid: dissociates in water to produce hydrogen ions, H⁺

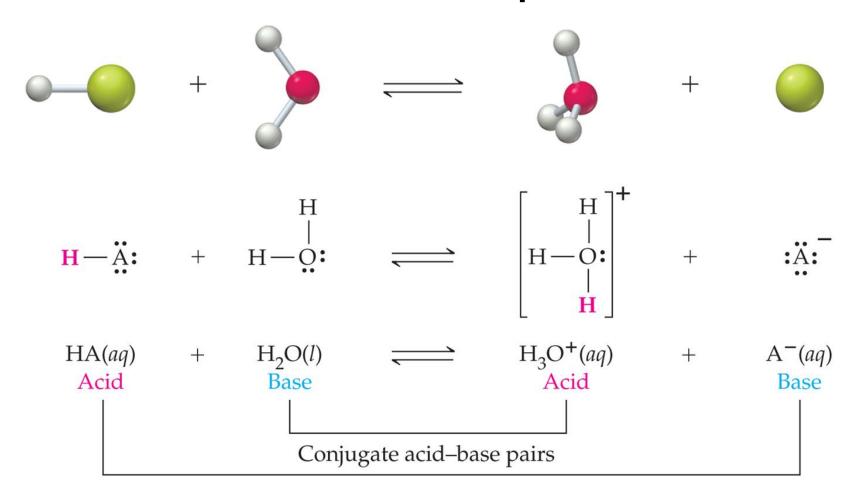
$$HA(aq) \rightleftharpoons H^{+}(aq) + A^{-}(aq)$$

Arrhenius Base: dissociates in water to produce hydroxide ions, OH⁻

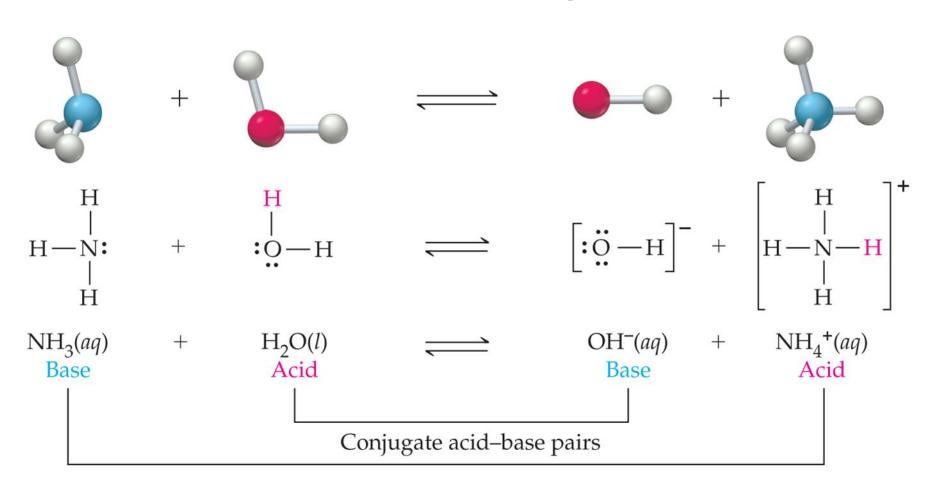
$$MOH(aq) \rightleftharpoons M^{+}(aq) + OH^{-}(aq)$$

Acid-Base Concepts: The Brønsted-Lowry Theory

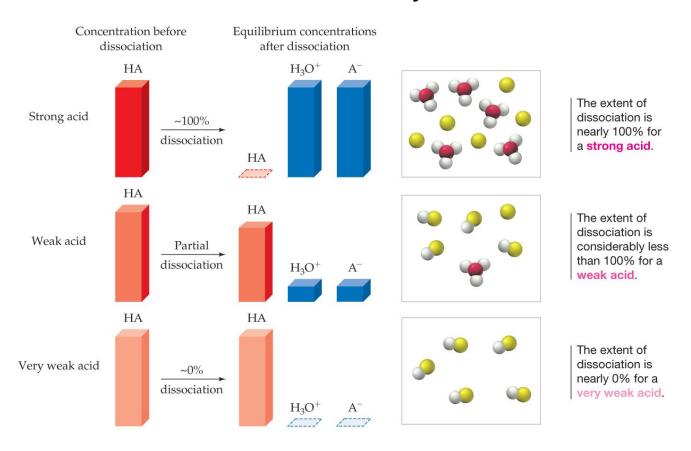
Brønsted-Lowry Acid: can transfer hydrogen ions, H⁺. In other words, a proton donor


Brønsted-Lowry Base: can accept hydrogen ions, H⁺. In other words, a proton acceptor

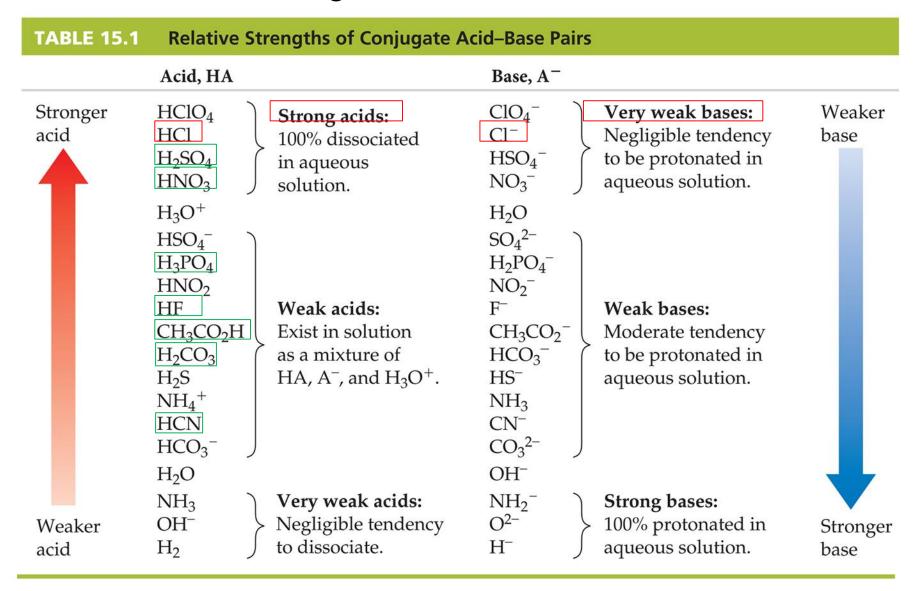
Conjugate Acid-Base Pairs: Chemical species whose formulas differ only by one hydrogen ion, H⁺


Acid-Base Concepts: The Brønsted-Lowry Theory (proton donor / acceptor)

Acid-Dissociation Equilibrium


Acid-Base Concepts: The Brønsted-Lowry Theory (proton donor / acceptor)

Base-Dissociation Equilibrium


Acid Strength and Base Strength

Weak Acid: An acid that is only partially dissociated in water and is thus a weak electrolyte

Acid Strength and Base Strength

Should know strong & weak acids circled.

HW 15.1: Acid-Base Concepts: Arrhenius & Brønsted-Lowry Theory (conjugate acid/base)

Given the following equation of acid/base dissociation. Give the Acid/Conjugate Base, Base/Conjugate Acid pairs.

a. H NO₃ + H₂O
$$\rightarrow$$
 NO₃⁻ + H₃O⁺

Acid _____ Conjugate Base _____
Base ____ Conjugate Acid ____

b. NH₃ + H₂O \rightarrow NH₄⁺ + OH⁻

Base ____ Conjugate Acid ____
Acid ___ Conjugate Base ____

c. H NO₃ + NaOH \rightarrow Na NO₃ + H₂O

Acid ____ Conjugate Base _____
Base ____ Conjugate Acid _____

Do this HW by emailing the answer in the text of your email instead of taking a photo of your answer on paper.

HW 15.1: Acid-Base Concepts: Arrhenius & Brønsted-Lowry Theory (conjugate acid/base)

Given the following equation of acid/base dissociation. Give the Acid/Conjugate Base, Base/Conjugate Acid pairs.

$$H NO_3 + H_2O \rightarrow NO_3^- + H_3O^+$$

Acid H NO₃ Conjugate Base NO₃-Base H₂O Conjugate Acid H₃O⁺

$$NH_3 + H_2O \rightarrow NH_4^+ + OH^-$$

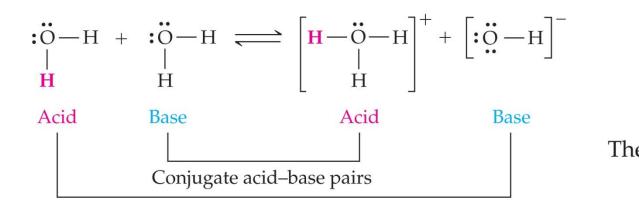
Base NH₃ Conjugate Acid NH₄⁺ Acid H₂O Conjugate Base OH⁻

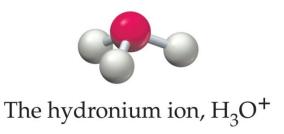
$$H NO_3 + NaOH \rightarrow Na NO_3 + H_2O$$

Acid H NO₃ Conjugate Base NO₃ Base NaOH Conjugate Acid H₂O

Do this HW by emailing the answer in the text of your email instead of taking a photo of your answer on paper.

Hydrated Protons and Hydronium Ions

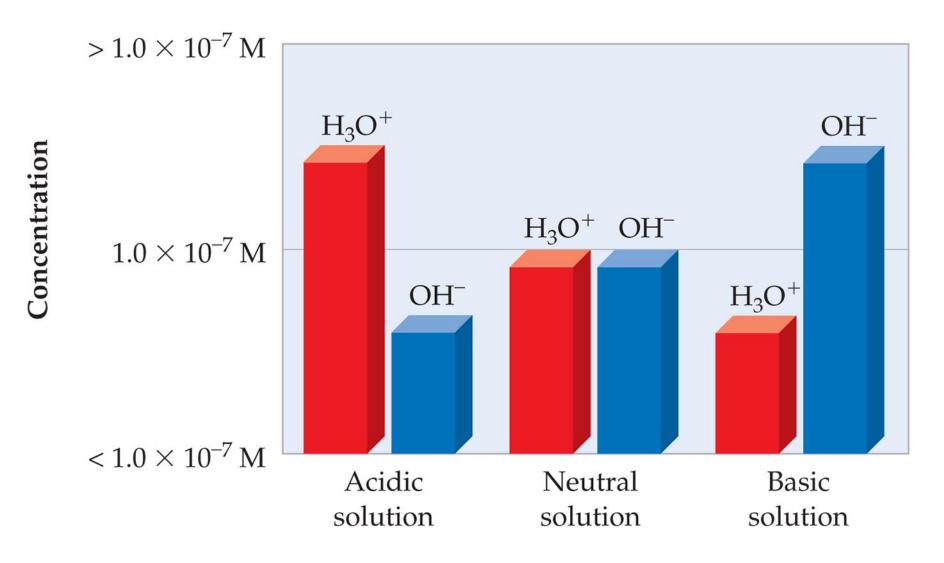

$$HA(aq) \rightleftharpoons H^{+}(aq) + A^{-}(aq)$$
 $HA(aq) + H_{2}O \rightleftharpoons H_{3}O^{+}(aq) + A^{-}(aq)$


Due to high reactivity of the hydrogen ion, it is actually hydrated by one or more water molecules.

$$\begin{cases} n = 1 & H_3O^+ \\ n = 2 & H_5O_2^+ \\ n = 3 & H_7O_3^+ \\ n = 4 & H_9O_4^+ \end{cases}$$

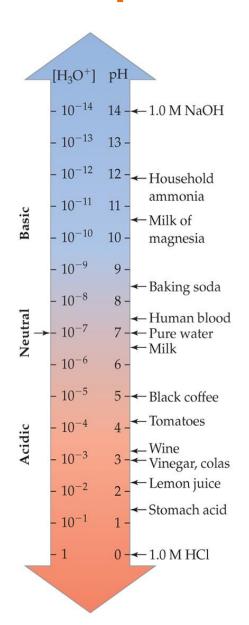
For our purposes, H^+ is equivalent to H_3O^+ .

K_w equilibrium is present for water with acid or base added.



Dissociation of Water: $2 H_2O(I) \rightleftharpoons H_3O^+(aq) + OH^-(aq)$

Ion-Product Constant for Water: $K_{w} = [H_{3}O^{+}][OH^{-}]$


at 25 °C:
$$[H_3O^+] = [OH^-] = 1.0 \times 10^{-7} \text{ M}$$

 $K_w = (1.0 \times 10^{-7})(1.0 \times 10^{-7}) = 1.0 \times 10^{-14}$

Acidic: $[H_3O^+] > [OH^-]$

Neutral: $[H_3O^+] = [OH^-]$

Basic: $[H_3O^+] < [OH^-]$

$$pH = -log[H3O+] [H3O+] = 10-pH$$
 antilog

Acidic: pH < 7

Neutral: pH = 7

Basic: pH > 7

$$K_{\rm w} = [H_3O^+][OH^-] = 1.0 \times 10^{-14}$$

$$[H_3O^+] = \frac{1.0 \times 10^{-14}}{[OH^-]}$$

$$[OH^{-}] = \frac{1.0 \times 10^{-14}}{[H_3O^{+}]}$$

p(anything) = -log (anything)

$$pK_w = pH + pOH = 14$$

$$pH = 14 - pOH$$

$$pOH = 14 - pH$$

The hydronium ion concentration for lemon juice is approximately 0.0025 M. What is the pH when $[H_3O^+] = 0.0025 M$?

2 significant figures
pH =
$$-\log(0.0025) = 2.60$$

2 decimal places

Calculate the pH of an aqueous ammonia solution that has an OH⁻ concentration of 0.0019 M.

$$[H_3O^+] = \frac{1.0 \times 10^{-14}}{[OH^1-]} = \frac{1.0 \times 10^{-14}}{0.0019} = 5.3 \times 10^{-12} \text{ M}$$

$$pH = -log(5.3 \times 10^{-12}) = 11.28$$

OR pOH =
$$-\log (0.0019) = -(-2.72)$$

pKw = 14 = pH + pOH (14 has infinite sig fig)
 $14 = pH + 2.72$
pH = 11.28

Acid rain is a matter of serious concern because most species of fish die in waters having a pH lower than 4.5–5.0. Calculate [H₃O⁺] in a lake that has a pH of 4.5.

$$[H_3O^+] = 10^{-4.5} = 3 \times 10^{-5} M$$

$$pH = 4.5 = -\log [H_3O^+]$$

$$-4.5 = \log [H_3O^+]$$

$$[H_3O^+] = antilog (-4.5)$$

$$antilog = 10^x in most calculators$$

The pH Scale Equations

$$pH = - log [H^+]$$
 $pOH = - log [OH^-]$
 $pK_w = - log K_w$
 $K_w = [H^+] [OH^-] = 1 \times 10^{-14}$
 $pK_w = pH + pOH = 14$

HW 15.2: The pH Scale

- (a) What is the pH of a solution of $[H^+] = 2.3 \times 10^{-2}$ pH = $-\log [H^+]$
- (b) What is the pOH of a solution of $[OH-] = 7.7 \times 10^{-3}$ pOH = - log $[OH^-]$
- (c) What is the pH of the solution in (b) above ? pH + pOH = 14

End class 3/30 M A sect, end class 3/31T sect C

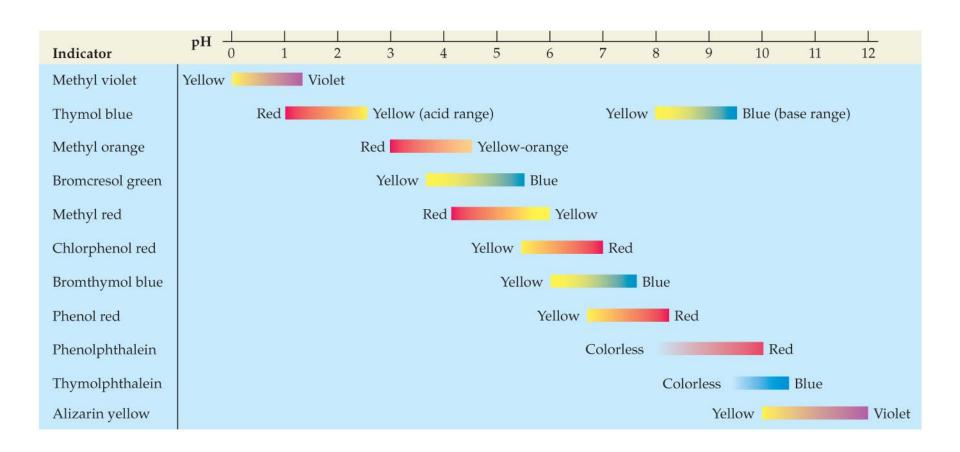
(d) What is the $[H^+]$ of the solution in (c) above ? $[H^+] = \text{antilog } (-pH)$

Answer this HW by writing the text of the answer into your email instead of uploading photo.

HW 15.2: The pH Scale

- (a) What is the pH of a solution of $[H^+] = 2.3 \times 10^{-2}$ pH = $-\log [H^+] = -\log(2.3\times10^{-2}) = -(-1.638) = 1.64$
- (b) What is the pOH of a solution of $[OH-] = 7.7 \times 10^{-3}$ pOH = $-\log [OH^-] = -\log(7.7 \times 10^{-3}) = -(-2.11) - 2.11$
- (c) What is the pH of the solution in (b) above ? pH + pOH = 14 pH + 2.11 = 14 pH = 11.9

(d) What is the $[H^+]$ of the solution in (c) above ? $[H^+]$ = antilog (-pH) = antilog(-11.9) = 1.26 x 10⁻¹²


Answer this HW by writing the text of the answer into your email instead of uploading photo.

Measuring pH

Acid–Base Indicator: A substance that changes color in a specific pH range. Indicators exhibit pH-dependent color changes because they are weak acids and have different colors in their acid (HIn) and conjugate base (In⁻) forms.

$$HIn(aq) + H_2O(I) \Longrightarrow H_3O^+(aq) + In^-(aq)$$
Color A
Color B

Measuring pH

The pH in Solutions of Strong Acids and Strong Bases

Just use concentration of strong acid or base bc dissociates completely.

What is the pH of a 0.025 M solution of HNO₃?

$$HNO_3(aq) + H_2O(I) \xrightarrow{100\%} H_3O^+(aq) + NO_3^-(aq)$$

Since HNO_3 is a strong acid, $[H_3O^+] = [HNO_3]$.

$$pH = -log([H_3O^+]) = -log(0.025) = 1.60$$

The pH in Solutions of Strong Acids and Strong Bases

Just use concentration of strong acid or base bc dissociates completely.

What is the pH of a 0.025 M solution of NaOH?

$$NaOH(aq) \longrightarrow Na^{+}(aq) + OH^{-}(aq)$$

Since NaOH is a strong base, [OH-] = [NaOH].

$$[H_3O^+] = \frac{1.0 \times 10^{-14}}{[OH^-]} = \frac{1.0 \times 10^{-14}}{0.025} = 4.0 \times 10^{-13} \text{ M}$$

pH =
$$-\log([H_3O^+]) = -\log(4.0 \times 10^{-13}) = 12.40$$

HW 15.3: The pH in Solutions of Strong Acids and Strong Bases

Just use concentration of strong acid or base be dissociates completely.

a. What is the pH of a 0.025 M solution of HCl?

b. What is the pH of a solution of 0.150 M solution of NaOH?

Answer this HW by writing the text of the answer into your email instead of uploading photo.

HW 15.3: The pH in Solutions of Strong Acids and Strong Bases

Just use concentration of strong acid or base be dissociates completely.

a. What is the pH of a
$$0.053$$
 M solution of HCl? $pH = -log(0.053) = (1.28)$

a. What is the pH of a solution of 0.150 M solution of NaOH? pOH= -log (0.150M) = - (-0.823)
 pH= 14 - 0.823 = 13.2

Answer this HW by writing the text of the answer into your email instead of uploading photo.

Equilibria in Solutions of Weak Acids

$$HA(aq) + H_2O(l) \rightleftharpoons H_3O^+(aq) + A^-(aq)$$

Acid-Dissociation Constant:
$$K_a = \frac{[H_3O^+][A^-]}{[HA]}$$

For Weak Acids and Weak Bases – MUST USE K_a / K_b

TABLE 15.2 Acid-Dissociation Constants at 25 °C

	Acid	Molecular Formula	Structural Formula*	$K_{\rm a}$	pK_a^{\dagger}
Stronger	Hydrochloric	HCl	H—Cl	$2 imes 10^6$	- 6.3
acid	Nitrous	HNO_2	$\mathbf{H} - \mathbf{O} - \mathbf{N} = \mathbf{O}$	4.5×10^{-4}	3.35
	Hydrofluoric	HF	H —F	3.5×10^{-4}	3.46
			O		
	Formic	HCO ₂ H	$H - \ddot{C} - O - H$	1.8×10^{-4}	3.74
			HO		
	Ascorbic (vitamin C)	$C_6H_8O_6$		8.0×10^{-5}	4.10
			HO / \ H CH—CH₂OH		
			OH		
			O 		
	Acetic	CH ₃ CO ₂ H	$CH_3 - \ddot{C} - O - \mathbf{H}$	1.8×10^{-5}	4.74
	Hypochlorous	HOC1	$\mathbf{H} - \mathbf{O} - \mathbf{C}\mathbf{I}$	3.5×10^{-8}	7.46
Weaker	Hydrocyanic	HCN	$\mathbf{H} - \mathbf{C} = \mathbf{N}$	4.9×10^{-10}	9.31
acid	Methanol	CH₃OH	CH_3-O-H	2.9×10^{-16}	15.54

^{*} The proton that is transferred to water when the acid dissociates is shown in red. † $pK_a = -\log K_a$.

Equilibria in Solutions of Weak Acids

The pH of 0.250 M HF is 2.036. What are the values of K_a and p K_a for hydrofluoric acid?

$$HF(aq) + H_2O(l) \Longrightarrow H_3O^+(aq) + F^-(aq)$$

0.250	≈0	0
-X	+ <i>X</i>	+ <i>X</i>
0.250 – x	X	X

$$x = [H_3O^+] = 10^{-2.036} = 0.00920 \text{ M}$$

Equilibria in Solutions of Weak Acids

$$K_{a} = \frac{[H_{3}O^{+}][F^{-}]}{[HF]}$$

$$[F^-] = [H_3O^+] = 0.00920 \text{ M}$$

$$[HF] = 0.250 - x = 0.250 - 0.00920 = 0.241 M$$

$$K_{a} = \frac{[H_{3}O^{+}][F^{-}]}{[HF]} = \frac{(0.00920)(0.00920)}{0.241} = \boxed{3.51 \times 10^{-4}}$$

$$pK_a = -\log(K_a) = -\log(3.51 \times 10^{-4}) = 3.455$$

HW 15.4: Calculating Equilibrium Concentrations of Weak Acids

Calculate the pH of a 0.10 M HCN solution. At 25 °C, K_a = 4.9 × 10⁻¹⁰.

$$HCN(aq) + H_2O(l) \Longrightarrow H_3O^+(aq) + CN^-(aq)$$

$$K_a = \frac{[H_3O^+][CN^-]}{[HCN]}$$

HW 15.4: Calculating Equilibrium Concentrations of Weak Acids

Calculate the pH of a 0.10 M HCN solution. At 25 °C, K_a = 4.9 × 10⁻¹⁰.

$$HCN(aq) + H_2O(l) \rightleftharpoons H_3O^+(aq) + CN^-(aq)$$

0.10	≈0	0
-X	+ <i>X</i>	+ <i>X</i>
0.10 – <i>x</i>	X	X

$$K_a = \frac{[H_3O^+][CN^-]}{[HCN]}$$

Calculating Equilibrium Concentrations of Weak Acids

$$4.9 \times 10^{-10} = \frac{(x)(x)}{(0.10 - x)} \approx \frac{x^2}{0.10}$$

$$x = [H_3O^+] = 7.0 \times 10^{-6} \text{ M}$$

pH =-log([H₃O⁺]) = -log(7.0 × 10⁻⁶) =
$$(5.15)$$

Polyprotic Acids – omit section 15.11

$$H_2CO_3(aq) + H_2O(I) \rightleftharpoons H_3O^+(aq) + HCO_3^-(aq)$$

$$K_{a1} = \frac{[H_3O^+][HCO_3^-]}{[H_2CO_3]} = 4.3 \times 10^{-7}$$

$$HCO_3^-(aq) + H_2O(I) \rightleftharpoons H_3O^+(aq) + CO_3^{2-}(aq)$$

$$K_{a2} = \frac{[H_3O^+][CO_3^{2-}]}{[HCO_3^-]} = 5.6 \times 10^{-11}$$

Equilibria in Solutions of Weak Bases

$$B(aq) + H_2O(I) \rightleftharpoons BH^+(aq) + OH^-(aq)$$

Base Acid Acid

Base

Base-Dissociation Constant:
$$K_b = \frac{[BH^+][OH^-]}{[B]}$$

$$NH_3(aq) + H_2O(I) \rightleftharpoons NH_4^+(aq) + OH^-(aq)$$

$$K_{b} = \frac{[NH_{4}^{+}][OH^{-}]}{[NH_{3}]}$$

End 4/1 Wed A sect

END QUIZ 7

QUIZ 7 ENDS HERE

Equilibria in Solutions of Weak Bases

TABLE 15.4 K_b Values for Some Weak Bases and K_a Values for Their Conjugate Acids at 25 °C

Base	Formula, B	K_{b}	Conjugate Acid, BH ⁺	K _a
Ammonia	NH ₃	1.8×10^{-5}	$\mathrm{NH_4}^+$	5.6×10^{-10}
Aniline	$C_6H_5NH_2$	4.3×10^{-10}	$C_6H_5NH_3^+$	2.3×10^{-5}
Dimethylamine	$(CH_3)_2NH$	5.4×10^{-4}	$(CH_3)_2NH_2^+$	1.9×10^{-11}
Hydrazine	N_2H_4	8.9×10^{-7}	$N_2H_5^+$	1.1×10^{-8}
Hydroxylamine	NH ₂ OH	9.1×10^{-9}	NH ₃ OH ⁺	1.1×10^{-6}
Methylamine	CH ₃ NH ₂	3.7×10^{-4}	CH ₃ NH ₃ ⁺	2.7×10^{-11}

Equilibria in Solutions of Weak Bases

Calculate the pH of a 0.40 M NH₃ solution. At 25 °C, $K_b = 1.8 \times 10^{-5}$.

$$NH_3(aq) + H_2O(l) \Longrightarrow NH_4^+(aq) + OH^-(aq)$$

0.40	0	≈0
-X	+ <i>X</i>	+ <i>X</i>
0.40 – <i>x</i>	X	X

$$K_{b} = \frac{[NH_{4}^{+}][OH^{-}]}{[NH_{3}]}$$

Equilibria in Solutions of Weak Bases

1.8 × 10⁻⁵ =
$$\frac{(x)(x)}{(0.40 - x)} \approx \frac{x^2}{0.40}$$

$$x = [OH^{-}] = 0.0027 \text{ M}$$

$$[H_3O^+] = \frac{1.0 \times 10^{-14}}{0.0027} = 3.7 \times 10^{-12} \,\mathrm{M}$$

pH =-log([H₃O⁺]) = -log(3.7 × 10⁻¹²) =
$$11.43$$

End 4/1 Wed, C section 4/3 F A sect

I accidentally did not send C sect a meeting link for today's livestream so I am going to not count new material covered today & will redo.

Relation Between K_a and K_b (for conjugate acid/base pairs)

$$NH_{4}^{+}(aq) + H_{2}O(I) \rightleftharpoons H_{3}O^{+}(aq) + NH_{3}(aq) \qquad K_{a}$$

$$NH_{3}(aq) + H_{2}O(I) \rightleftharpoons NH_{4}^{+}(aq) + OH^{-}(aq) \qquad K_{b}$$

$$2 H_{2}O(I) \rightleftharpoons H_{3}O^{+}(aq) + OH^{-}(aq) \qquad K_{w}$$

$$K_a \times K_b = \frac{[H_3O^+][NH_3]}{[NH_4^+]} \times \frac{[NH_4^+][OH^-]}{[NH_3]} = [H_3O^+][OH^-] = K_w$$

= $(5.6 \times 10^{-10})(1.8 \times 10^{-5}) = 1.0 \times 10^{-14}$

Relation Between K_a and K_b

$$K_a \times K_b = K_w$$

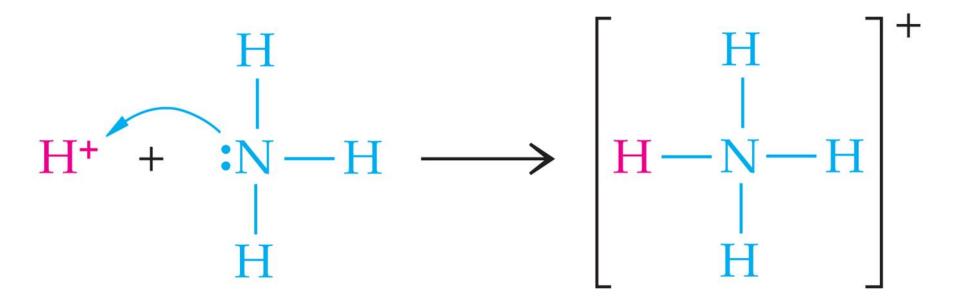
conjugate acid-base pair

$$K_{\rm a} = \frac{K_{\rm w}}{K_{\rm b}}$$
 $K_{\rm b} = \frac{K_{\rm w}}{K_{\rm a}}$

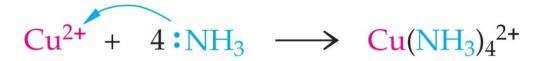
$$pK_a + pK_b = pK_w = 14.00$$

Acid–Base Properties of Salts

TABLE 15.5 Acid-Base Properties of Salts


Type of Salt	Examples	Ions That React with Water	pH of Solution
Cation from strong base; anion from strong acid	NaCl, KNO ₃ , BaI ₂	None	~7
Cation from weak base; anion from strong acid	NH_4Cl , NH_4NO_3 , $[(CH_3)_3NH]Cl$	Cation	<7
Small, highly charged, cation; anion from strong acid	AlCl ₃ , $Cr(NO_3)_3$, $Fe(ClO_4)_3$	Hydrated cation	<7
Cation from strong base; anion from weak acid	NaCN, KF, Na ₂ CO ₃	Anion	>7
Cation from weak base; anion from weak acid	NH_4CN , NH_4F , $(NH_4)_2CO_3$	Cation and anion	$<7 \text{ if } K_a > K_b$ >7 if $K_a < K_b$ ~7 if $K_a \approx K_b$

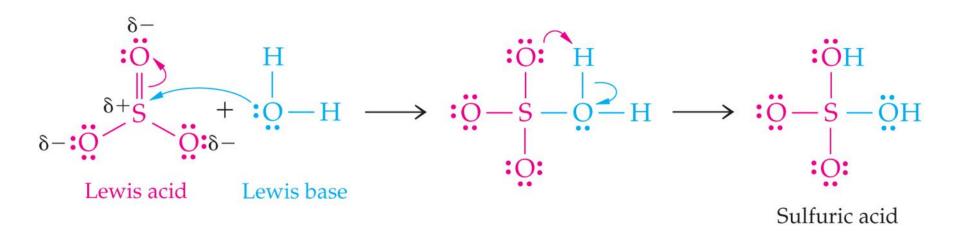
conjugate acid (cation) of strong base & conjugate base (anion) of strong acid = neutral conjugate acid of weak base (cation) = weak acid conjugate base of weak acid (anion) = weak base conjugate acid (cation) of weak base & conjugate base (anion) of weak acid = depends (Ka, Kb)


Lewis Acids and Bases

Lewis Acid: An electron-pair acceptor (group 3A, + charge)

Lewis Base: An electron-pair donor (lone pair in LD struct)

Lewis Acids and Bases



Lewis acid Lewis base

- (a) Light blue Cu²⁺(aq)
- **(b)** Addition of $NH_3(aq)$ to (a) gives a light blue precipitate of $Cu(OH)_2$.
- (c) Addition of excess $NH_3(aq)$ to **(a)** or **(b)** yields the deep blue $Cu(NH_3)_4^{2+}$ ion.

Lewis Acids and Bases

HW ANSWERS

HW 15.1: Acid-Base Concepts: Arrhenius & Brønsted-Lowry Theory (conjugate acid/base)

Given the following equation of acid/base dissociation. Give the Acid/Conjugate Base, Base/Conjugate Acid pairs.

$$H NO_3 + H_2O \rightarrow NO_3^- + H_3O^+$$

Acid H NO₃ Conjugate Base NO₃-Base H₂O Conjugate Acid H₃O⁺

$$NH_3 + H_2O \rightarrow NH_4^+ + OH^-$$

Base NH₃ Conjugate Acid NH₄⁺ Acid H₂O Conjugate Base OH⁻

$$H NO_3 + NaOH \rightarrow Na NO_3 + H_2O$$

Acid H NO₃ Conjugate Base NO₃ Base NaOH Conjugate Acid H₂O

Do this HW by emailing the answer in the text of your email instead of taking a photo of your answer on paper.

HW 15.2: The pH Scale

- (a) What is the pH of a solution of $[H^+] = 2.3 \times 10^{-2}$ pH = $-\log [H^+] = -\log(2.3\times10^{-2}) = -(-1.638) = 1.64$
- (b) What is the pOH of a solution of $[OH-] = 7.7 \times 10^{-3}$ pOH = $-\log [OH^-] = -\log(7.7 \times 10^{-3}) = -(-2.11) - 2.11$
- (c) What is the pH of the solution in (b) above ? pH + pOH = 14 pH + 2.11 = 14 pH = 11.9

(d) What is the $[H^+]$ of the solution in (c) above ? $[H^+]$ = antilog (-pH) = antilog(-11.9) = 1.26 x 10⁻¹²

Answer this HW by writing the text of the answer into your email instead of uploading photo.

HW 15.3: The pH in Solutions of Strong Acids and Strong Bases

Just use concentration of strong acid or base be dissociates completely.

a. What is the pH of a
$$0.053$$
 M solution of HCl? $pH = -log(0.053) = (1.28)$

a. What is the pH of a solution of 0.150 M solution of NaOH? pOH= -log (0.150M) = - (-0.823)
 pH= 14 - 0.823 = 13.2

Answer this HW by writing the text of the answer into your email instead of uploading photo.

HW 15.4: Calculating Equilibrium Concentrations of Weak Acids

Calculate the pH of a 0.10 M HCN solution. At 25 °C, K_a = 4.9 × 10⁻¹⁰.

$$HCN(aq) + H_2O(l) \rightleftharpoons H_3O^+(aq) + CN^-(aq)$$

0.10	≈0	0
-X	+ <i>X</i>	+ <i>X</i>
0.10 – <i>x</i>	X	X

$$K_a = \frac{[H_3O^+][CN^-]}{[HCN]}$$

Calculating Equilibrium Concentrations of Weak Acids

$$4.9 \times 10^{-10} = \frac{(x)(x)}{(0.10 - x)} \approx \frac{x^2}{0.10}$$

$$x = [H_3O^+] = 7.0 \times 10^{-6} \text{ M}$$

pH =-log([H₃O⁺]) = -log(7.0 × 10⁻⁶) =
$$(5.15)$$