

Lecture Presentation

Chapter 16 Applications of Aqueous Equilibria

16.1, 16.2, 16.3, 16.7, 16.10, 16.14, 16.16 c, 16.20, 16.22, 16.26

> John E. McMurry Robert C. Fay

Strong Acid–Strong Base

 $HCI(aq) + NaOH(aq) \rightleftharpoons H_2O(l) + NaCI(aq)$

Assume complete dissociation bc strong acid / strong base strong acid/base & salts dissociates 100% weak acids / bases do NOT

 $H^{+}(aq) + \mathcal{C}I^{-}(aq) + Na^{+}(aq) + OH^{-}(aq) \Longrightarrow H_{2}O(l) + Na^{+}(aq) + \mathcal{C}I^{-}(aq)$ $H_{3}O^{+}(aq) + OH^{-}(aq) \Longrightarrow 2 H_{2}O(l)$

(net ionic equation)

After neutralization: $p\dot{H} = 7$ K = 1/K_w = 1/(1.0 x 10⁻¹⁴) = 1.0 x 10¹⁴

Weak Acid–Strong Base

 $CH_3CO_2H(aq) + NaOH(aq) \Longrightarrow H_2O(l) + NaCH_3CO_2(aq)$

Assume complete dissociation:

 $CH_3CO_2H(aq) + Ma^+(aq) + OH^-(aq) \rightleftharpoons H_2O(l) + Ma^+(aq) + CH_3CO_2^-(aq)$

strong acid/base & salts dissociates 100%conjugate base of weak acidweak acids / bases do NOTis weak base

 $CH_{3}CO_{2}H(aq) + OH^{-}(aq) \rightleftharpoons H_{2}O(l) + CH_{3}CO_{2}^{-}(aq)$

(net ionic equation)

after neutralization: pH > 7 (basic)

Weak Acid–Strong Base

 $CH_3CO_2H(aq) + NaOH(aq) \rightleftharpoons H_2O(I) + NaCH_3CO_2(aq)$

Weak acid–strong base neutralization $CH_3CO_2H(aq) + OH^-(aq) \implies$ $H_2O(l) + CH_3CO_2^-(aq)$

Strong Acid–Weak Base

 $HCI(aq) + NH_{3}(aq) \rightleftharpoons NH_{4}CI(aq)$

Assume complete dissociation:

 $H_3O^+(aq) + CI^-(aq) + NH_3(aq) \implies H_2O(I) + NH_4^+(aq) + CI^-(aq)$

strong acid/base & salts dissociates 100% | conjugate acid of weak base weak acids / bases do NOT | is weak acid

$$H_3O^+(aq) + NH_3(aq) \rightleftharpoons H_2O(l) + NH_4^+(aq)$$

(net ionic equation)

After neutralization: **pH < 7** (acidic)

Strong Acid–Weak Base HCl(aq) + NH₃(aq) \rightleftharpoons NH₄Cl(aq)

Strong acid–weak base neutralization $H_3O^+(aq) + NH_3(aq) \Longrightarrow H_2O(l) + NH_4^+(aq)$

Weak Acid–Weak Base

 $CH_3CO_2H(aq) + NH_3(aq) \Longrightarrow NH_4CH_3CO_2(aq)$

assume complete dissociation of salt

 $CH_3CO_2H(aq) + NH_3(aq) \rightleftharpoons NH_4^+(aq) + CH_3CO_2^-(aq)$

(net ionic equation)

After neutralization: **pH = ?**

strong acid/base & salts dissociates 100% weak acids / bases do NOT

HW 16.1: Neutralization Reactions

(a) Give the neutralization reaction for the following acid / base reaction (HF is weak acid, KOH is strong base)

HF + KOH \rightarrow + + (Can use either 2 or 3 blanks for answer - 2 blanks if you do not show the salt dissociated, 3 blanks if you show the salt dissociated)

(b) Is the product of the neutralization.[(acidic) (basic) (neutral)] (choose one)

HW 16.1: Neutralization Reactions

(a) Give the neutralization reaction for the following acid / base reaction

 $HF + KOH \rightarrow H_2O + KF molecular rxn$ $HF + K^+ + OH^- \rightarrow H_2O + K^+ + F^- \text{ total ionic}$ $HF + OH^- \rightarrow H_2O + F^- \text{ net ionic rxn}$

(b) Is the product of the neutralization.[(acidic) (basic) (neutral)] (choose one)

K + is neutral, F- is weak base so weak base

Common-Ion Effect: The *shift in the position of an equilibrium* on addition of a substance that provides an ion in common with one of the ions already involved in the equilibrium

 $CH_{3}CO_{2}H(aq) + H_{2}O(l) \rightleftharpoons H_{3}O^{+}(aq) + CH_{3}CO_{2}^{-}(aq)$ Add Na $CH_{3}CO_{2}$

Calculate the pH of a solution that is prepared by dissolved 0.10 mol of acetic acid and 0.10 mol sodium acetate in enough water to make 1.00 L of solution. Ka=1.8 x 10^{-5}

 $CH_3CO_2H(aq) + H_2O(I) \rightleftharpoons H_3O^+(aq) + CH_3CO_2^-(aq)$

0.10	≈0	0.10
- <i>x</i>	+ <i>X</i>	+ <i>X</i>
0.10 – <i>x</i>	X	0.10 + x

$$K_{a} = \frac{[H_{3}O^{+}][CH_{3}CO_{2}^{-}]}{[CH_{3}CO_{2}H]}$$

$$1.8 \times 10^{-5} = \frac{(x)(0.10 + x)}{(0.10 - x)} \approx \frac{x(0.10)}{0.10}$$
 x << 0.10

$$x = [H_3O^+] = 1.8 \times 10^{-5} \text{ M}$$

$$pH = -log([H_3O^+]) = -log(1.8 \times 10^{-5}) = 4.74$$

With common ion

$$\begin{split} & \text{CH}_3\text{CO}_2\text{H}(aq)\text{-}\text{CH}_3\text{CO}_2\text{Na}(aq)\\ & [\text{H}_3\text{O}^+] = 1.8\times10^{-5}\,\text{M}\\ & \textbf{pH} = \textbf{4.74} \end{split}$$

The difference in pH is revealed by the color of the indicator methyl orange, which changes from yellow to red in the pH range 4.4–3.2.

Without common ion

- CH₃CO₂H(*aq*)
[H₃O⁺] =
$$1.3 \times 10^{-3}$$
 M
pH = 2.89

Le Châtelier's Principle

 $CH_{3}CO_{2}H(aq) + H_{2}O(l) \rightleftharpoons H_{3}O^{+}(aq) + CH_{3}CO_{2}^{-}(aq)$

The addition of acetate ion to a solution of a cetic acid suppresses the dissociation of the acid. The equilibrium shifts to the left.

 $CH_3CO_2^-(aq)$ Added common ion

HW 16.2: The Common-Ion Effect

What is the concentration of all species for the reaction of HCN? Ka = 4.9×10^{-10} The solution has 0.025 M HCN and 0.010 M Na CN

 0.025 ≈ 0 0.010

 -x +x +x

 0.0250 - x x 0.010 + x

 $H CN (aq) + H_2O(l) \rightleftharpoons H_3O^+(aq) + CN^-(aq)$

$$K_{a} = \frac{[H_{3}O^{+}][CN^{-}]}{[HCN]}$$

HW 16.2: The Common-Ion Effect

What is the concentration of all species for the reaction of HCN? Ka = 4.9×10^{-10} The solution has 0.025 M HCN and 0.010 M Na CN [on quiz 8 stuff from GC I (a) # moles from grams (b) mL & Molarity – A+ portion of Q8]

	0.025		0	0.010	
	-x		+ <i>X</i>	+ <i>X</i>	
	0.025-x (Assume x is small)		X	0.010+x (assume x is small)	
K _a =	[x][0.010+x [0.025-x]	$\frac{[x]}{[0.01]} = \frac{[x][0.01]}{[0.025]}$	x = 1. F_{0} HCN	$2 \times 10^{-9} = H_3 G$ = 0.025	

CN = 0.010

 $H CN (aq) + H_2O(l) \implies H_3O^+(aq) + CN^-(aq)$

Buffer Solutions

Buffer Solution: A solution that contains a weak acid and its conjugate base and resists drastic changes in pH

Buffer Solutions

 $\begin{array}{lll} \mathsf{CH}_3\mathsf{CO}_2\mathsf{H}(aq) + \mathsf{H}_2\mathsf{O}(l) \rightleftharpoons \mathsf{H}_3\mathsf{O}^+(aq) + \mathsf{CH}_3\mathsf{CO}_2^-(aq) \\ \\ \text{Weak acid} & & & \\$

Addition of OH¹⁻ to a buffer: change strong base to weak base $CH_3CO_2H(aq) + OH^-(aq) \xrightarrow{100\%} H_2O(l) + CH_3CO_2^-(aq)$

Addition of H₃O¹⁺ to a buffer: change strong acid to weak acid $CH_3CO_2^{-}(aq) + H_3O^{+}(aq) \xrightarrow{100\%} H_2O(I) + CH_3CO_2H(aq)$

Buffer Solutions

+ HCl to NONBUFFER

- (a) 1.00 L of 1.8 × 10⁻⁵ M HCl (pH = 4.74)
- (b) The solution from (a) turns yellow (pH > 5.4) after addition of only a few drops of 0.10 M NaOH.

+ HCl to BUFFER

- (c) 1.00 L of a 0.10 M acetic acid-0.10 M sodium acetate buffer solution (pH = 4.74)
- (d) The solution from (c) is still red (pH < 5.4) after addition of 100 mL of 0.10 M NaOH.

The Henderson–Hasselbalch Equation (Derivation of Henderson-Hasselbalch)

 $\begin{array}{l} \mathsf{CH}_{3}\mathsf{CO}_{2}\mathsf{H}(aq) + \mathsf{H}_{2}\mathsf{O}(l) \rightleftharpoons \mathsf{H}_{3}\mathsf{O}^{+}(aq) + \mathsf{CH}_{3}\mathsf{CO}_{2}^{-}(aq) \\ \\ \text{Weak acid} & \text{Conjugate base} \end{array}$

 $Acid(aq) + H_2O(I) \rightleftharpoons H_3O^+(aq) + Base(aq)$

$$K_{a} = \frac{[H_{3}O^{+}][Base]}{[Acid]}$$
 $[H_{3}O^{+}] = K_{a} \frac{[Acid]}{[Base]}$

The Henderson–Hasselbalch Equation

$$[H_3O^+] = K_a \frac{[Acid]}{[Base]}$$

$$-\log([H_3O^+]) = -\log(K_a) - \log \frac{[Acid]}{[Base]}$$

$$pH = pK_a + log \begin{bmatrix} Base \\ [Acid] \end{bmatrix}$$
Henderson-Hasselbalch
Equation
End 4/6 Monday
A sect, 4/7

Tuesday C sect

HW 16.3: Buffer Solutions

What is the pH of a buffer solution with 0.25 M HF and 0.50 M NaF. Ka = 3.5×10^{-4} . (using ICE table or Henderson Hasselbalch)

$H F (aq) + H_2O(I) \rightleftharpoons H_3O^+(aq) + F^-(aq)$

$$K_{a} = \frac{[H_{3}O^{+}][F^{-}]}{[H F]}$$

HW 16.3: Buffer Solutions

What is the pH of a buffer solution with 0.25 M HF and 0.50 M NaF. Ka = 3.5×10^{-4} . (using ICE table or Henderson Hasselbalch) [on quiz 8 stuff from GC I (a) # moles from grams (b) mL & Molarity – A+ portion of Q8]

0.25	≈0	0.50
-x	+ <i>X</i>	+ <i>X</i>
0.250 – x	X	0.50 + <i>x</i>

 $H F (aq) + H_2O(I) \rightleftharpoons H_3O^+(aq) + F^-(aq)$

IZ IZ	[H ₃ O+][F-]	$(x)(0.50+x) \sim$	$(x)(0.50) = 3.5 \times 10^{-4}$
$K_a =$	[H F]	0.250 - x	0.250

$$x = \frac{(3.5 \times 10^{-4})(0.250)}{(0.50)} = 1.75 \times 10^{-4}$$

pH = -log (1.75 x 10⁻⁴) = 3.757

HW 16.3: Buffer Solutions

What is the pH of a buffer solution with 0.25 M HF and 0.50 M NaF. Ka = 3.5×10^{-4} . What is the pH after the addition of 0.002 mol HNO₃?

$H F (aq) + H_2O(l) \rightleftharpoons H_3O^+(aq) + F^-(aq)$

Using Henderson – Hasselbalch:

pH = pKa + log [base] = -log (3.5 x 10⁻⁴) + log
$$0.50$$

[acid] 0.25

pH = 3.456 + 0.30 = 3.757

HW 16.4: Buffer Solutions

Buffer Solution: A solution that contains a weak acid and its conjugate base and resists drastic changes in pH

Given the following reagents, fill the blank with the other molecule needed to make a buffer solution and label each as (A) for acid or (B) for base.

1. $CH_3CO_2H()$ ()

2. CN⁻() ____()

3. NH₃()

HW 16.4: Buffer Solutions

Buffer Solution: A solution that contains a weak acid and its conjugate base and resists drastic changes in pH

Given the following reagents, fill the blank with the other molecule needed to make a buffer solution and label each as (A) for acid or (B) for base.

- 1. $CH_3CO_2H(A) = CH_3CO_2(B)$
- 2. $CN^{-}(B)$ H CN(A)
- 3. NH_3 (B) NH_4^+ (A)

pH Titration Curves

<u>Titration</u>: adding <u>measured</u> volume (<u>known</u> <u>concentration</u>) to react with a <u>known volume</u> of the solution of another substance (the standard solution) with <u>unknown concentration</u> (adding acid to base or adding base to acid)

Equivalence Point: The point with stoichiometric equivalence of the two reagents. (moles H⁺ = moles OH⁻)

pH Titration Curves

(a) A pH titration in which 0.100 M NaOH is added slowly from a buret to an HCl solution of unknown concentration. The pH of the solution is measured with a pH meter and is recorded as a function of the volume of NaOH added.

Acid of unknown concentration

pН

(strong base vs. strong acid)

(b) The pH titration curve for titration of 40.0 mL of 0.100 M HCl with 0.100 M NaOH.

fast pH change near equivalence pt.

mL of 0.100 M NaOH added

volume base added

$$H_3O^+(aq) + OH^-(aq) \xrightarrow{100\%} 2 H_2O(I)$$

1. Before Addition of Any NaOH

base titration

2. Before the Equivalence Point

3. At the Equivalence Point

4. Beyond the Equivalence Point

Weak Acid–Strong Base Titrations $CH_3CO_2H(aq) + OH^-(aq) \rightleftharpoons H_2O(l) + CH_3CO_2^-(aq)$

Weak Acid–Strong Base Titrations

The curves shown are for titration of 40.0 mL of 0.100 M solutions of various weak acids with 0.100 M NaOH. In each case, the equivalence point comes after addition of 40.0 mL of the base.

Bottom curve is strong acid vs strong base 0.1 M 40 mL 0.1 M 40 mL

Rest of plots are for various other weak acids of 40 mL of 0.1 M. All other acids have equivalence point at 40 mL NaOH.

Weak acid curve is less sharp and well defined.

Weak Base–Strong Acid Titrations

100%NH₃(aq) + H₃O⁺(aq) \longrightarrow NH₄⁺(aq) + H₂O(/)
1. Before Addition of Any HCI

2. Before the Equivalence Point $NH_3(aq) + H_3O^+(aq) \xrightarrow{100\%} NH_4^+(aq) + H_2O(I)$

3. At the Equivalence Point

mL of 0.100 M HCl added

4. Beyond the Equivalence Point

HW 16.4: pH Titration Curves

Label the following titration curve as (A) strong acid added to strong base (B) strong base added to strong acid (C) strong base added to weak acid (choose one letter under each #) (only weak acid and weak base being titrated (stuff in beaker) has buffer, strong acid/strong base being titrated has NO BUFFER)

HW 16.4: pH Titration Curves

Label the following titration curve as (A) strong acid added to strong base (B) strong base added to strong acid (C) strong base added to weak acid (choose one letter under each #)

1.(A)(B)(C) 2.(A)(B)(C) 3.(A)(B)(C)

HW 16.5: pH Titration Curves

If you do a titration of 100.0 mL of 0.50 M H Cl with 0.25 M NaOH, what is the volume of base at the equivalence point ? $(M_{acid}V_{acid} = M_{base}V_{base})$

End 4/8/20 Wed A & C section

HW 16.5: pH Titration Curves

•

If you do a titration of 100.0 mL of 0.50 M H Cl with 0.25 M NaOH, what is the volume of base at the equivalence point ? $(M_{acid}V_{acid} = M_{base} V_{base})$

 $V_{acid} = 100.0 \text{ mL H Cl}$ $M_{acid} = 0.50 \text{ M HCl}$ $M_{base} = 0.25 \text{ M}$

(0.50 M HCl)(100.0 mL HCl) = (0.25 M Na OH)(x mL NaOH)

x mL NaOH = 200.0 mL NaOH

End Quiz 8 & Test 4

Solubility Equilibria – quantitative look at precipitation (we did qualitative precipitation in General Chemistry I Lecture)

$$CaF_2(s) \rightleftharpoons Ca^{2+}(aq) + 2 F^{-}(aq)$$

 $K_{sp} = [Ca^{2+}][F^{-}]^2$

Equilibrium constant in heterogeneous solution.

Solubility Equilibria

$$M_m X_x(s) \rightleftharpoons m M^{n+}(aq) + x X^{y-}(aq)$$

$$K_{\rm sp} = [\mathsf{M}^{n+}]^m \, [\mathsf{X}^{y-}]^x$$

Measuring K_{sp} and Calculating Solubility from K_{sp}

If the concentrations of $Ca^{2+}(aq)$ and $F^{1-}(aq)$ in a saturated solution of calcium fluoride are known, K_{sp} may be calculated.

$$CaF_{2}(s) \rightleftharpoons Ca^{2+}(aq) + 2F^{-}(aq)$$

$$[Ca^{2+}] = 2.0 \times 10^{-4} \text{ M} [F^{-}] = 4.1 \times 10^{-4} \text{ M}$$

$$\mathcal{K}_{sp} = [Ca^{2+}][F^{-}]^{2} = (2.0 \times 10^{-4})(4.1 \times 10^{-4})^{2} = 3.4 \times 10^{-11}$$

$$(at \ 25 \ ^{\circ}C)$$

Measuring K_{sp} and Calculating Solubility from K_{sp}

TABLE 16.3	K _{sp} Va	lues for	Some	lonic	Compounds	at 25	°C
-------------------	--------------------	----------	------	-------	-----------	-------	----

Name	Formula	K _{sp}
Aluminum hydroxide	$Al(OH)_3$	1.9×10^{-33}
Barium carbonate	BaCO ₃	2.6×10^{-9}
Calcium carbonate	CaCO ₃	5.0×10^{-9}
Calcium fluoride	CaF ₂	3.5×10^{-11}
Lead(II) chloride	PbCl ₂	1.2×10^{-5}
Lead(II) chromate	PbCrO ₄	$2.8 imes 10^{-13}$
Silver chloride	AgCl	$1.8 imes 10^{-10}$
Silver sulfate	Ag_2SO_4	1.2×10^{-5}

Measuring K_{sp} and Calculating Solubility from K_{sp}

Calculate the molar solubility of MgF₂ in water at 25 °C.

$$MgF_2(s) \Longrightarrow Mg^{2+}(aq) + 2F^{-}(aq)$$

X	2 <i>x</i>
---	------------

$$K_{sp} = 7.4 \times 10^{-11} = [Mg^{2+}][F^{-}]^2 = (x)(2x)^2$$

 $4x^3 = 7.4 \times 10^{-11}$
 $x = [Mg^{2+}] = Molar solubility = 2.6 \times 10^{-4} M$

HW 16.6: Measuring K_{sp} and Calculating Solubility from K_{sp}

Calculate the molar solubility of Ag CI in water at 25 °C.

Ag CI (s)
$$\implies$$
 Ag $^+(aq) + CI^-(aq)$

$$K_{\rm sp} = 1.8 \times 10^{-10} = [Ag^+][CI^-]$$

HW 16.6: Measuring K_{sp} and Calculating Solubility from K_{sp}

Calculate the molar solubility of Ag CI in water at 25 °C.

Ag Cl (s)
$$\implies$$
 Ag +(aq) + Cl⁻(aq)

X	X
---	---

$$K_{sp} = 1.8 \times 10^{-10} = [Ag^+][CI^-] = (x)(x)$$

 $x^2 = 1.8 \times 10^{-10}$
 $x = [Ag^+] = Molar solubility = 1.3 \times 10^{-5} M$

Factors That Affect Solubility (Qualitative for Final Exam)

End 3/14 T C section

- 1. common ion effect le Chatelier
- 2. Effect of pH common ion effect with H_3O^+
- 3. Effect of complex ions $Ag(NH_3)_2$ soluble (AgCl with added ammonia is soluble)
- 4. Ampherotism Al^{+3} soluble in acid and base

Solubility and the Common-Ion Effect

Calculate the molar solubility of MgF_2 in 0.10 M NaF at 25 °C.

_MgF ₂ (s) =	\implies Mg ²⁺ (aq)	+ 2F ⁻ (<i>aq</i>)
	X	0.10 + 2 <i>x</i>

$$K_{\rm sp} = 7.4 \times 10^{-11} = [Mg^{2+}][F^{-}]^2 = (x)(0.10 + 2x)^2$$

7.4 × 10⁻¹¹ = (x)(0.10 + 2x)^2 ≈ (x)(0.10)^2

 $x = [Mg^{2+}] = Molar \text{ solubility } = \frac{7.4 \times 10^{-9}}{(0.10)^2} = (7.4 \times 10^{-9} \text{ M})$

x << than 0.10 (bc Ksp is very small) so $0.10 + 2x \sim 0.10$

Solubility and the **Common-Ion** Effect

$$MgF_2(s) \Longrightarrow Mg^{2+}(aq) + 2 F^{-}(aq)$$

Molar solubility: 2.6×10^{-4} M (without common ion)

Molar solubility in 0.10 M NaF: 7.4×10^{-9} M (with common ion effect)

Why does the solubility decrease in the presence of a common ion?

Le Châtelier's Principle

Factors That Affect Solubility Solubility and the pH of the Solution – le Chatelier (Common Ion of H₃O⁺)

 $CaCO_3(s) + H_3O^+(aq) \implies Ca^{2+}(aq) + HCO_3^-(aq) + H_2O(l)$

pH

Solubility and the Formation of Complex Ions (common ion le Chatelier's)

$$Ag^{+}(aq) + 2 NH_{3}(aq) \Longrightarrow Ag(NH_{3})_{2}^{+}(aq)$$

$$AgCI (s) \rightarrow Ag^{+}(aq) + CI^{-} (aq)$$

Silver chloride is quite insoluble in water . . .

... but dissolves on addition of an

excess of aqueous ammonia.

Solubility and the Formation of Complex Ions

 $Ag^+(aq) + 2 NH_3(aq) \Longrightarrow Ag(NH_3)_2^+(aq)$

Concentration of NH₃ (mol/L)

Solubility and Amphoterism (both acidic & basic)

Aluminum hydroxide is soluble *both* in strongly acidic and in strongly basic solutions.

In acid: $AI(OH)_3(s) + 3 H_3O^+(aq) \Longrightarrow AI^{3+}(aq) + 6 H_2O(I)$

In base: $AI(OH)_3(s) + OH^-(aq) \Longrightarrow AI(OH)_4^-(aq)$

Solubility and Amphoterism

Aluminum hydroxide, a gelatinous white precipitate, forms on addition of aqueous NaOH to $Al^{3+}(aq)$.

The precipitate dissolves on addition of excess aqueous NaOH, yielding the colorless $Al(OH)_4^-$ ion. The precipitate also dissolves in aqueous HCl, yielding the colorless Al^{3+} ion.

Solubility and Amphoterism

pH

ANSWERS TO HOMEWORK IN CLASS

HW 16.1: Neutralization Reactions

(a) Give the neutralization reaction for the following acid / base reaction

- $HF + KOH \rightarrow H_2O + KF$
- $HF + K^+ + OH^- \rightarrow H_2O + K^+ + F^-$

(b) Is the product of the neutralization.[(acidic) (basic) (neutral)] (choose one)

K is neutral, F is weak base so weak base

HW 16.2: The Common-Ion Effect

What is the concentration of all species for the reaction of HCN? Ka = 4.9×10^{-10} The solution has 0.025 M HCN and 0.010 M Na CN

 0.025 ≈ 0 0.010

 -x +x +x

 0.0250 - x x 0.010 + x

 $H CN (aq) + H_2O(l) \rightleftharpoons H_3O^+(aq) + CN^-(aq)$

$$K_{a} = \frac{[H_{3}O^{+}][CN^{-}]}{[HCN]}$$

HW 16.3: Buffer Solutions

What is the pH of a buffer solution with 0.25 M HF and 0.50 M NaF. Ka = 3.5×10^{-4} . (using ICE table or Henderson Hasselbalch)

 $H F (aq) + H_2O(l) \rightleftharpoons H_3O^+(aq) + F^-(aq)$

0.25	≈0	0.50
- <i>x</i>	+ <i>X</i>	+ <i>X</i>
0.250 – <i>x</i>	X	0.50 + <i>x</i>

$$K_{a} = \frac{[H_{3}O^{+}][F^{-}]}{[H F]} \quad \frac{(x)(0.50+x)}{0.250-x} \sim \frac{(x)(0.50)}{0.250} = 3.5 \times 10^{-4}$$

$$x = \frac{(3.5 \times 10^{-4})(0.250)}{(0.50)} = 1.75 \times 10^{-4}$$

pH = -log (1.75 x 10⁻⁴) = 3.757

HW 16.2: Buffer Solutions

What is the pH of a buffer solution with 0.25 M HF and 0.50 M NaF. Ka = 3.5×10^{-4} . What is the pH after the addition of 0.002 mol HNO₃?

$H F (aq) + H_2O(l) \rightleftharpoons H_3O^+(aq) + F^-(aq)$

Using Henderson – Hasselbalch:

pH = pKa + log [base] = -log
$$(3.5 \times 10^{-4})$$
 + log 0.50
[acid] 0.25

pH = 3.456 + 0.30 = 3.757

HW 16.3: Buffer Solutions

What is the pH of a buffer solution with 0.25 M HF and 0.50 M NaF. Ka = 3.5×10^{-4} . (using ICE table or Henderson Hasselbalch)

 $H F (aq) + H_2O(l) \rightleftharpoons H_3O^+(aq) + F^-(aq)$

0.25	≈0	0.50
- <i>x</i>	+ <i>X</i>	+ <i>X</i>
0.250 – <i>x</i>	X	0.50 + <i>x</i>

$$K_{a} = \frac{[H_{3}O^{+}][F^{-}]}{[H F]} \quad \frac{(x)(0.50+x)}{0.250-x} \sim \frac{(x)(0.50)}{0.250} = 3.5 \times 10^{-4}$$

$$x = \frac{(3.5 \times 10^{-4})(0.250)}{(0.50)} = 1.75 \times 10^{-4}$$

pH = -log (1.75 x 10⁻⁴) = 3.757

HW 16.3: Buffer Solutions

What is the pH of a buffer solution with 0.25 M HF and 0.50 M NaF. Ka = 3.5×10^{-4} . What is the pH after the addition of 0.002 mol HNO₃?

 $H F (aq) + H_2O(l) \rightleftharpoons H_3O^+(aq) + F^-(aq)$

Using Henderson – Hasselbalch:

pH = pKa + log [base] = -log
$$(3.5 \times 10^{-4}) + log \frac{0.50}{0.25}$$

pH = 3.456 + 0.30 = 3.757

HW 16.4: pH Titration Curves

Label the following titration curve as (A) strong acid added to strong base (B) strong base added to strong acid (C) strong base added to weak acid (choose one letter under each #)

1.(A)(B)(C) 2.(A)(B)(C) 3.(A)(B)(C)

HW 16.5: pH Titration Curves

•

If you do a titration of 100.0 mL of 0.50 M H Cl with 0.25 M NaOH, what is the volume of base at the equivalence point ? $(M_{acid}V_{acid} = M_{base} V_{base})$

 $V_{acid} = 100.0 \text{ mL H Cl}$ $M_{acid} = 0.50 \text{ M HCl}$ $M_{base} = 0.25 \text{ M}$

(0.50 M HCl)(100.0 mL HCl) = (0.25 M Na OH)(x mL NaOH)

x mL NaOH = 200.0 mL NaOH

HW 16.6: Measuring K_{sp} and Calculating Solubility from K_{sp}

Calculate the molar solubility of Ag CI in water at 25 °C.

Ag Cl (s)
$$\implies$$
 Ag +(aq) + Cl⁻(aq)

X	X
---	---

$$K_{sp} = 1.8 \times 10^{-10} = [Ag^+][CI^-] = (x)(x)$$

 $x^2 = 1.8 \times 10^{-10}$
 $x = [Ag^+] = Molar solubility = 1.3 \times 10^{-5} M$