

Lecture Presentation

Electrochemistry

John E. McMurry Robert C. Fay

Balancing Redox Reactions by the Half-Reaction Method (in acidic solution)

Step 1. Write the unbalanced net ionic equation.

Step 2. Decide which atoms are oxidized and which are reduced, and write the two unbalanced half-reactions.

Step 3. Balance both half-reactions for all atoms except O and H .

Step 4. Balance each half-reaction for O by adding water to the side with less O , and balance for H by adding H^{+}to the side with less H .

Step 5. Balance each half-reaction for charge by adding electrons to the side with greater positive charge, and then multiply by suitable factors to make the electron count the same in both half-reactions.

Step 6. Add the two balanced half-reactions together, and cancel electrons and other species that appear on both sides of the equation.

Check your answer by making sure the equation is balanced both for atoms and for charge.

Balancing Redox Reactions by the Half-Reaction Method

Balance the following net ionic equation in acidic solution:

$$
\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}(a q)+\mathrm{Cl}^{-}(a q) \longrightarrow \mathrm{Cr}^{3+}(a q)+\mathrm{Cl}_{2}(a q)
$$

$$
\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-} \quad \text { Reduction } \mathrm{Cr}^{3+}
$$

Balancing Redox Reactions: The Half-Reaction Method

- Write the two unbalanced half-reactions.

$$
\begin{aligned}
\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}(\mathrm{aq}) & \longrightarrow \mathrm{Cr}^{3+}(a q) \\
\mathrm{Cl}^{-}(\mathrm{aq}) & \longrightarrow \mathrm{Cl}_{2}(\mathrm{aq})
\end{aligned}
$$

Balancing Redox Reactions: The Half-Reaction Method

- Balance both half-reactions for all atoms except O and H .

$$
\begin{gathered}
\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}(\mathrm{aq}) \longrightarrow 2 \mathrm{Cr}^{3+}(\mathrm{aq}) \\
2 \mathrm{Cl}^{-}(\mathrm{aq}) \longrightarrow \mathrm{Cl}_{2}(\mathrm{aq})
\end{gathered}
$$

Balancing Redox Reactions: The Half-Reaction Method

- Balance each half-reaction for O by adding $\mathrm{H}_{2} \mathrm{O}$, and then balance for H by adding H^{+}.
$14 \mathrm{H}^{+}(a q)+\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}(a q) \longrightarrow 2 \mathrm{Cr}^{3+}(a q)+7 \mathrm{H}_{2} \mathrm{O}(\Omega)$

$$
2 \mathrm{Cl}^{-}(a q) \longrightarrow \mathrm{Cl}_{2}(a q)
$$

End A sect
 4/20/20
 Monday

Balancing Redox Reactions: The Half-Reaction Method

- Balance each half-reaction for charge by adding electrons to the side with greater positive charge.
reduction: $6 \mathrm{e}^{-}+14 \mathrm{H}^{+}(\mathrm{aq})+\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}(\mathrm{aq}) \longrightarrow 2 \mathrm{Cr}^{3+}(\mathrm{aq})+7 \mathrm{H}_{2} \mathrm{O}(\Lambda)$ oxidation:

$$
2 \mathrm{Cl}^{-}(\mathrm{aq}) \longrightarrow \mathrm{Cl}_{2}(\mathrm{aq})+2 \mathrm{e}^{-}
$$

Balancing Redox Reactions: The Half-Reaction Method

- Multiply each half-reaction by a factor to make the electron count the same in both half-reactions.
reduction: $6 \mathrm{e}^{-}+14 \mathrm{H}^{+}(\mathrm{aq})+\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}(\mathrm{aq}) \longrightarrow 2 \mathrm{Cr}^{3+}(\mathrm{aq})+7 \mathrm{H}_{2} \mathrm{O}(\Lambda)$
oxidation:

$$
3\left(2 \mathrm{Cl}^{-}(a q) \longrightarrow \mathrm{Cl}_{2}(a q)+2 \mathrm{e}^{-}\right)
$$

Balancing Redox Reactions: The Half-Reaction Method

- Add the two balanced half-reactions together and cancel species that appear on both sides of the equation.
reduction: $6 \mathrm{e}^{-}+14 \mathrm{H}^{+}(a q)+\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}(a q) \longrightarrow 2 \mathrm{Cr}^{3+}(a q)+7 \mathrm{H}_{2} \mathrm{O}(\Omega)$
oxidation:

$$
6 \mathrm{Cl}^{-}(\mathrm{aq}) \longrightarrow 3 \mathrm{Cl}_{2}(\mathrm{aq})+6 \mathrm{e}^{-}
$$

$$
\left(\begin{array}{rl}
14 \mathrm{H}^{+}(a q)+\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}(a q) & +6 \mathrm{Cl}^{-}(a q) \\
& \longrightarrow \mathrm{Cr}^{3+}(a q)+7 \mathrm{H}_{2} \mathrm{O}(\Lambda)+3 \mathrm{Cl}_{2}(a q)
\end{array}\right)
$$

HW 18.1: Balancing Redox Reactions: The Half-Reaction Method

$$
\mathrm{Zn}(s)+\mathrm{Cu}^{2+}(a q) \longrightarrow \mathrm{Zn}^{2+}(a q)+\mathrm{Cu}(s)
$$

(a) Oxidation half-reaction:
(b) Reduction half-reaction:
18.1: Balancing Redox Reactions: The Half-Reaction Method

$$
\mathrm{Zn}(s)+\mathrm{Cu}^{2+(a q) \longrightarrow \mathrm{Zn}^{2+}(a q)+\mathrm{Cu}(s)}
$$

End 4/21/20
Tues, C section
(a) Oxidation half-reaction:
(b) Reduction half-reaction:

18.1: Balancing Redox Reactions: The Halfi-Reaction Method

(a) Oxidation half-reaction: $\mathrm{Zn}(s) \longrightarrow \mathrm{Zn}^{2+}(a q)+2 \mathrm{e}^{-}$
(b) Reduction half-reaction: $\mathrm{Cu}^{2+}(a q)+2 \mathrm{e}^{-} \longrightarrow \mathrm{Cu}(s)$

Balanced redox reaction:

$$
\mathrm{Zn}(s)+\mathrm{Cu}^{2+}(a q) \longrightarrow \mathrm{Zn}^{2+}(a q)+\mathrm{Cu}(s)
$$

HW 18.2: Balancing Redox Reactions: The Half-Reaction Method (acidic solution)

$+2$
$\mathrm{NO}_{3}^{-}(\mathrm{aq})+\mathrm{Cu}(s) \longrightarrow \mathrm{NO}(g)+\mathrm{Cu}^{+2}(a q)$ $+5$
(a) Oxidation half-reaction:
(b) Reduction half-reaction: \qquad
(c) Balanced redox reaction:
$\ldots \mathrm{NO}_{3}^{-}(\mathrm{aq})+8 \mathrm{H}^{+}+3 \mathrm{Cu}(s) \rightarrow 2 \mathrm{NO}(g)+3 \mathrm{Cu}^{+2}(a q)+\ldots \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$

End 4/22 Wed
A,C section

HW 18.2: Balancing Redox Reactions: The Half-Reaction Method (acidic solution)

 +3 e
(a) Oxidation half-reaction:
(b) Reduction half-reaction: \qquad
(c) Balanced redox reaction:
$\ldots \mathrm{NO}_{3}^{-}(\mathrm{aq})+8 \mathrm{H}^{+}+3 \mathrm{Cu}(s) \quad \rightarrow \quad 2 \mathrm{NO}(g)+3 \mathrm{Cu}^{+2}(a q)+$

HW 18.2: Balancing Redox Reactions: The Half-Reaction Method (acidic solution) +3 e

(a) Oxidation half-reaction: $\mathrm{Cu}(s) \longrightarrow \mathrm{Cu}^{2+}(a q)+2 \mathrm{e}^{-}$
(b) Reduction half-reaction: $\mathrm{NO}_{3}^{-}(a q)+3 \mathrm{e}^{-} \longrightarrow \mathrm{NO}(g)$
(c) Balanced redox reaction:

$$
2 \mathrm{NO}_{3}^{-}(\mathrm{aq})+8 \mathrm{H}^{+}+3 \mathrm{Cu}(s) \quad \rightarrow \quad 2 \mathrm{NO}(g)+3 \mathrm{Cu}^{+2}(a q)+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

End Final

 Exam