

Lecture Presentation

 Chapter 4
Reactions in

 Aqueous Solution$$
\begin{aligned}
& \text { 4.1, } 4.2,4.3,4.4,4.6,4.7, \\
& 4.8,4.12,4.15,4.18,4.20 \\
& 4.22,4.23,4.24,4.26,4.28 \\
& 4.31,4.42,4.48,4.52,4.54 \\
& 4.64,4.68,4.70,4.72,4.90 \\
& 4.98,4.104,4.110,4.138
\end{aligned}
$$

John E. McMurry Robert C. Fay

Solution Concentration: Molarity

Molarity: The number of moles of a substance dissolved in each liter of solution

Solution: A homogeneous mixture
Solute: The dissolved substance in a solution (substance you have less quantity of in solution)

Solvent: The major component in a solution (substance you have more of in solution)

Solution Concentration: Molarity

A measured number of moles of solute is placed in a volumetric flask.

Enough solvent is added to dissolve the solute by swirling.

Further solvent is added to reach the calibration mark on the neck of the flask, and the solution is mixed until uniform.

Definition of Molarity

Molarity (M)

- Commonly used expression for concentration
- Defined as moles of solute per volume of solution in liters

$$
M=\text { molarity }=\frac{\text { moles of solute }}{\text { liters of solution }}
$$

also $\mathrm{M}=\frac{\text { moles of solute }}{1000 \mathrm{ml} \text { of solution }} \longleftarrow$| use if given volume of |
| :--- |
| solution in mL |

Definition of Molarity

$$
M=\text { molarity }=\frac{\text { moles of solute }}{\text { liters of solution }}
$$

Example: What is the molarity if you put 1.00 mol of sodium chloride in enough water to make 1.00 L of solution? End class D section 9/30

$$
\frac{1.00 \mathrm{~mol}}{1.00 \mathrm{~L}}=1.00 \frac{\mathrm{~mol}}{\mathrm{~L}} \text { or } 1.00 \mathrm{M}
$$

End class D section 9/30

Solution Concentration: Molarity

- Calculate the molarity of a solution prepared by dissolving 1.56 g of gaseous $\mathrm{HCl}(36.46 \mathrm{~g} / \mathrm{mol})$ in enough water to make 26.8 mL of solution
- Doc camera

Solution Concentration: Molarity

- Where are we going?
- To find the molarity of HCl solution
- What do we know?
- 1.56 g HCl
- 26.8 mL solution
- What information do we need to find molarity?
- Moles solute

$$
\text { Molarity }=\frac{\text { mol solute }}{\text { L solution }}
$$

Solution Concentration: Molarity

- How do we get there?
- What are the moles of $\mathrm{HCl}(36.46 \mathrm{~g} / \mathrm{mol})$?

$$
1.56 \mathrm{~g} \text { НеТ } \times \frac{1 \mathrm{~mol} \mathrm{HCl}}{36.46 \mathrm{~g} \mathrm{HCI}}=4.28 \times 10^{-2} \mathrm{~mol} \mathrm{HCl}
$$

- What is the volume of solution (in liters)?

$$
26.8 \mathrm{~mL} \times \frac{1 \mathrm{~L}}{1000 \mathrm{~mL}}=2.68 \times 10^{-2} \mathrm{~L}
$$

Solution Concentration: Molarity

- What is the molarity of the solution?

$$
\text { Molarity }=\frac{4.28 \times 10^{-2} \mathrm{~mol} \mathrm{HCl}}{2.68 \times 10^{-2} \mathrm{~L} \text { solution }}=1.60 \mathrm{M} \mathrm{HCl}
$$

- Reality check
- The units are correct for molarity

Solution Concentration: Molarity

Determining Moles of Solute in a Sample

- Use the definition of molarity as a conversion factor (to get moles of solute)

Liters of solution \times molarity $=$ liters of solution $\times \frac{\text { moles of solute }}{\text { liters of solution }}$

$$
\text { Moles of solute }=\text { Liters of solution } \times \text { molarity }
$$

Solution Concentration: Molarity

- Calculate the number of moles of Cl^{-}ions in 1.75 L of 0.152 M NaCl ($\mathrm{M}=$ moles / liter solution)

On doc camera

HW: Solution Concentration: Molarity

How many grams of solute would you use to prepare 1.50 L of 0.250 M glucose, $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$?

Molar mass $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}=180.0 \mathrm{~g} / \mathrm{mol}$

Solution Concentration: Molarity

How many grams of solute would you use to prepare 1.50 L of 0.250 M glucose, $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$?

Molar mass $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}=180.0 \mathrm{~g} / \mathrm{mol}$

$$
1.50 \mathrm{~L} \times \frac{0.250 \mathrm{~mol}}{1 \mathrm{~L}} \times \frac{180.0 \mathrm{~g}}{1 \mathrm{~mol}}=67.5 \mathrm{~g}
$$

Dilution

- Process of adding water to a concentrated (stock) solution
moles of solute before dilution = moles of solute after dilution

$$
M_{i} V_{i}=\text { moles initial }, M_{f} V_{f}=\text { moles final }
$$

- dilution equation:

$$
\mathrm{M}_{\mathrm{i}} \mathrm{~V}_{\mathrm{i}}=\mathrm{M}_{\mathrm{f}} \mathrm{~V}_{\mathrm{f}}
$$

- as long as keep volume unit the same between initial and final, can have both mL or both L

Diluting Concentrated Solutions

The volume to be diluted is placed in an empty volumetric flask.

Solvent is added to a level just below the calibration mark, and the flask is shaken.

More solvent is added to reach the calibration mark, and the flask is again shaken.

Diluting Concentrated Solutions

How would you prepare 250.0 mL of 0.500 M from 18.0 M aqueous $\mathrm{H}_{2} \mathrm{SO}_{4}$?

$$
\begin{gathered}
\mathrm{M}_{\mathrm{i}}=18.0 \mathrm{M} \quad \mathrm{M}_{\mathrm{f}}=0.500 \mathrm{M} \\
V_{\mathrm{i}}=? \mathrm{~mL} \quad V_{\mathrm{f}}=250.0 \mathrm{~mL} \\
V_{\mathrm{i}}=\frac{\mathrm{M}_{\mathrm{f}} V_{\mathrm{f}}}{\mathrm{M}_{\mathrm{i}}}=\frac{0.500 \mathrm{M}}{18.0 \mathrm{M}} \times 250.0 \mathrm{~mL}=6.94 \mathrm{~mL}
\end{gathered}
$$

Add 6.94 mL 18.0 M sulfuric acid to enough water to make 250.0 mL of 0.500 M solution.

HW: Diluting Concentrated Solutions [do (a) only for HW]

- Describe how you would prepare 2.00 L of each of the following solutions: (on doc camera)
a. 0.250 M NaOH from 1.00 M NaOH stock solution
b. $0.100 \mathrm{M} \mathrm{K}_{2} \mathrm{CrO}_{4}$ from $1.75 \mathrm{M} \mathrm{K}_{2} \mathrm{CrO}_{4}$ stock solution

HW: Diluting Concentrated Solutions [do (a)

 only for HW]End 9/30 F section

- Describe how you would prepare 2.00 L of each of the following solutions: (on doc camera)
a. 0.250 M NaOH from 1.00 M NaOH stock solution

Add $500 . \mathrm{mL}(=0.500 \mathrm{~L})$ of the 1.00 M NaOH stock solution to a 2-L volumetric flask; fill to the mark with
b. $0.100 \mathrm{M} \mathrm{K}_{2} \mathrm{CrO}_{4}$ from $1.75 \mathrm{M}_{2} \mathrm{CrO}_{4}$ stock solution

Add 114 mL (= 0.114 L) of the $1.75 \mathrm{M} \mathrm{K}_{2} \mathrm{CrO}_{4}$ stock solution to a 2 - L volumetric flask; fill to the mark with water

Electrolytes in Aqueous Solution

Electrolytes: dissociate in water to produce conducting solutions of ions

$$
\mathrm{NaCl}(s) \xrightarrow{\mathrm{H}_{2} \mathrm{O}} \mathrm{Na}^{+}(a q)+\mathrm{Cl}^{-}(a q)
$$

Nonelectrolytes: do not dissociate to produce ions in water (covalent compounds)

$$
\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}(s) \xrightarrow{\mathrm{H}_{2} \mathrm{O}} \mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}(a q)
$$

Electrolytes in Aqueous Solution

A solution of NaCl conducts electricity because of the movement of charged particles (ions), thereby completing the circuit and allowing the bulb to light.

A solution of sucrose does not conduct electricity or complete the circuit because it contains no mobile charged particles. The bulb therefore remains dark.

Electrolytes in Aqueous Solution

Strong Electrolytes: completely dissociates in water (ionic compounds, strong acids, strong bases)

$$
\mathrm{KCl}(a q) \longrightarrow \mathrm{K}^{+}(a q)+\mathrm{Cl}^{-}(a q)
$$

Weak Electrolytes: incompletely dissociates in water (weak acids, weak bases)

$$
\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}(\mathrm{aq}) \rightleftharpoons \mathrm{H}^{+}(\mathrm{aq})+\mathrm{CH}_{3} \mathrm{CO}_{2}^{-}(\mathrm{aq})
$$

Electrolytes in Aqueous Solution

TABLE 4.1 Electrolyte Classification of Some Common Substances

Strong Electrolytes W	Weak Electrolytes	Nonelectrolytes
$\mathrm{HCl}, \mathrm{HBr}, \mathrm{HI}$	$\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}$	$\mathrm{H}_{2} \mathrm{O}$
HClO_{4}	HF	$\mathrm{CH}_{3} \mathrm{OH}$ (methyl alcohol)
HNO_{3}	HCN	$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ (ethyl alcohol)
$\mathrm{H}_{2} \mathrm{SO}_{4}$		$\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}$ (sucrose)
KBr		Most compounds of carbon (organic compounds)
NaCl		compounds)
$\mathrm{NaOH}, \mathrm{KOH}$		
Other soluble ionic compounds		

Strong Acids: Hydrochloric acid, hydrobromic acid, hydroiodic acid, perchloric acid, nitric acid, sulfuric acid

Electrolytes in Aqueous Solution

TABLE 4.1 Electrolyte Classification of Some Common Substances

Strong Electrolytes	Weak Electrolytes	Nonelectrolytes
$\mathrm{HCl}, \mathrm{HBr}, \mathrm{HI}$	$\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}$	$\mathrm{H}_{2} \mathrm{O}$
HClO_{4}	HF	$\mathrm{CH}_{3} \mathrm{OH}$ (methyl alcohol)
HNO_{3}	HCN	$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ (ethyl alcohol)
$\mathrm{H}_{2} \mathrm{SO}_{4}$		$\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}$ (sucrose)
KBr Most compounds of carbon (organic compounds) NaCl $\mathrm{NaOH}, \mathrm{KOH}$ Other soluble ionic compounds		

Ionic compounds

Electrolytes in Aqueous Solution

TABLE 4.1 Electrolyte Classification of Some Common Substances

Electrolytes in Aqueous Solution

TABLE 4.1 Electrolyte Classification of Some Common Substances

Strong Electrolytes	Weak Electrolytes	Nonelectrolytes
$\mathrm{HCl}, \mathrm{HBr}, \mathrm{HI}$	$\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}$	H
$\mathrm{HClO}_{4} \mathrm{O}$		
HNO_{3}	HF	$\mathrm{CH}_{3} \mathrm{OH}$ (methyl alcohol)
$\mathrm{H}_{2} \mathrm{SO}_{4}$	HCN	$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ (ethyl alcohol)
KBr		$\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}$ (sucrose) Most compounds of carbon (organic compounds)
NaCl		
$\mathrm{NaOH}, \mathrm{KOH}$		
Other soluble ionic compounds		

Molecular (covalent) compounds

End class 9/30 Monday G section

Types of Chemical Reactions in Aqueous Solution

Precipitation Reactions: soluble reactants give insoluble solid product (precipitates out)

$$
\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}(a q)+2 \mathrm{KI}(a q) \longrightarrow 2 \mathrm{KNO}_{3}(a q)+\mathrm{PbI}_{2}(s)
$$

Types of Chemical Reactions in Aqueous Solution

Oxidation-Reduction (Redox) Reactions: one or more electrons (negative charge) are transferred between reaction partners

$$
\begin{gathered}
\begin{array}{c}
2(+1) \text { electrons } \\
\mathrm{Mg}(s)+2 \mathrm{HCl}(a q) \longrightarrow \mathrm{MgCl}_{2}(a q)+\mathrm{H}_{2}(g) \\
\text { zero }+1-1 \quad+2-1 \quad \text { zero } \\
-2 \text { electrons }
\end{array}
\end{gathered}
$$

Types of Chemical Reactions in Aqueous Solution

Acid-Base Neutralization Reactions: acid reacts with base to give water \& salt (salt is ionic compound, not always NaCl)

$$
\begin{aligned}
& \mathrm{HCl}(a q)+\mathrm{NaOH}(a q) \longrightarrow \mathrm{H}_{2} \mathrm{O}(\Lambda+\mathrm{NaCl}(a q) \\
& \text { acid } \quad \text { base } \quad \text { water salt } \\
& \hline
\end{aligned}
$$

Aqueous Reactions and Net Ionic Equations (different ways to write reactions)

Molecular Equation: write complete formulas as if molecules.

Strong electrolytes
Precipitate

Aqueous Reactions and Net lonic Equations (different ways to write reactions)

Ionic Equation: write strong electrolytes as dissociated ions. (solid, liquid, gas, weak electrolyte compounds written as molecular formula-do NOT dissociate)

Aqueous Reactions and Net lonic Equations (different ways to write reactions)

Spectator lons: ions that do not change during the reaction. (\& just watch the reaction without doing anything)

$$
\mathrm{Pb}^{2+}(a q)+2 \mathrm{NO}_{3}^{-}(a q)+2 \mathrm{~K}^{+}(a q)+2 \mathrm{I}^{-}(a q)
$$

$$
\longrightarrow 2 \mathrm{~K}^{+}(\mathrm{aq})+2 \mathrm{NO}_{3}^{-}(\mathrm{aq})+\mathrm{Pbl}_{2}(s)
$$

Aqueous Reactions and Net lonic Equations (different ways to write reactions)

Net lonic Equation: Only the ions undergoing change are shown. (leave out spectators)

$$
\mathrm{Pb}^{2+}(\mathrm{aq})+2 \mathrm{I}^{-}(\mathrm{aq}) \longrightarrow \mathrm{PbI}_{2}(s)
$$

End 10/2 W D section

Precipitation Reactions and Solubility Guidelines
 $$
\text { Typo } \mathrm{L}^{+} \text {is really } \mathrm{Li}^{+}
$$

TABLE 4.2 Solubility Guidelines for Ionic Compounds in Water

Soluble Compounds

Common Exceptions
$\mathrm{L}^{+}, \mathrm{Na}^{+}, \mathrm{K}^{+}, \mathrm{Rb}^{+}, \mathrm{Cs}^{+}$(group 1A None
cations)
$\mathrm{NH}_{4}{ }^{+}$(ammonium ion) None
$\mathrm{Cl}^{-}, \mathrm{Br}^{-}, \mathrm{I}^{-}$(halide)
$\mathrm{NO}_{3}{ }^{-}$(nitrate)
ClO_{4}^{-}(perchlorate)
$\mathrm{CH}_{3} \mathrm{CO}_{2}^{-}$(acetate)
$\mathrm{SO}_{4}{ }^{2-}$ (sulfate)
Insoluble Compounds
$\mathrm{CO}_{3}{ }^{2-}$ (carbonate)
S^{2-} (sulfide)
$\mathrm{PO}_{4}{ }^{3-}$ (phosphate)
OH^{-}(hydroxide)
Halides of $\mathrm{Ag}^{+}, \mathrm{Hg}_{2}{ }^{2+}, \mathrm{Pb}^{2+}$
None
None
None
Sulfates of $\mathrm{Sr}^{2+}, \mathrm{Ba}^{2+}, \mathrm{Hg}_{2}{ }^{2+}, \mathrm{Pb}^{2+}$
Common Exceptions
Carbonates of group 1A cations, NH_{4}^{+}
Sulfides of group 1A cations, $\mathrm{NH}_{4}^{+}, \mathrm{Ca}^{2+}, \mathrm{Sr}^{2+}$, and Ba^{2+}
Phosphates of group 1A cations, NH_{4}^{+}
Hydroxides of group 1A cations, $\mathrm{NH}_{4}^{+}, \mathrm{Ca}^{2+}, \mathrm{Sr}^{2+}$, and Ba^{2+}

HW: Are the following compounds soluble or insoluble in water?

$\mathrm{Li}_{2} \mathrm{CO}_{3}$
Ba SO 4
$\mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}$

Precipitation Reactions and Solubility Guidelines

Write the molecular, ionic, and net ionic equations for the reaction that occurs when aqueous solutions of AgNO_{3} and $\mathrm{Na}_{2} \mathrm{CO}_{3}$ are mixed.

Precipitation Reactions and Solubility Guidelines

Write the molecular, ionic, and net ionic equations for the reaction that occurs when aqueous solutions of AgNO_{3} and $\mathrm{Na}_{2} \mathrm{CO}_{3}$ are mixed.

Write the chemical formulas of the products (use proper ionic rules). (exchange cation / anion partners)

$$
\begin{array}{ll}
\mathrm{AgNO}_{3}(\mathrm{aq})+\mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{aq}) \longrightarrow \mathrm{Ag}_{2} \mathrm{CO}_{3}+\mathrm{NaNO}_{3} \\
\mathrm{CD} \longrightarrow \mathrm{CB}+\mathrm{AD} \quad \text { Cation (on left) Anion (on right) }
\end{array}
$$

double replacement reaction

Precipitation Reactions and Solubility Guidelines

Write the molecular, ionic, and net ionic equations for the reaction that occurs when aqueous solutions of AgNO_{3} and $\mathrm{Na}_{2} \mathrm{CO}_{3}$ are mixed.
2. Molecular Equation: Balance the equation and predict the solubility of each possible product.

$$
2 \mathrm{AgNO}_{3}(\mathrm{aq})+\mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{aq}) \longrightarrow \mathrm{Ag}_{2} \mathrm{CO}_{3}(\mathrm{~s})+2 \mathrm{NaNO}_{3}(\mathrm{aq})
$$

contains a group 1A cation (soluble from solubility chart)

Precipitation Reactions and Solubility Guidelines

Write the molecular, ionic, and net ionic equations for the reaction that occurs when aqueous solutions of AgNO_{3} and $\mathrm{Na}_{2} \mathrm{CO}_{3}$ are mixed.
3. Ionic Equation: dissociate the soluble ionic compounds. Do NOT dissociate precipitates.

Precipitation Reactions and Solubility Guidelines

Write the molecular, ionic, and net ionic equations for the reaction that occurs when aqueous solutions of AgNO_{3} and $\mathrm{Na}_{2} \mathrm{CO}_{3}$ are mixed.

End F section 10/2

4. Net Ionic Equation: Eliminate the spectator ions from the ionic equation.

$$
2 \mathrm{Ag}^{+}(\mathrm{aq})+\mathrm{CO}_{3}{ }^{2^{-}}(\mathrm{aq}) \longrightarrow \mathrm{Ag}_{2} \mathrm{CO}_{3}(s)
$$

$$
\begin{aligned}
& 2 \mathrm{Ag}^{+}(\mathrm{aq})+2 \mathrm{NO}_{3}-(\mathrm{aq})+2 \mathrm{Na}+(\mathrm{aq})+\mathrm{CO}_{3}{ }^{-}(\mathrm{aq}) \\
& \longrightarrow \mathrm{Ag}_{2} \mathrm{CO}_{3}(s)+2 \mathrm{Na}^{+}(\mathrm{aq})+2 \mathrm{NO}_{3}(\mathrm{aq})
\end{aligned}
$$

HW: Precipitation Reaction For the following, Write out (a) molecular reaction (b) total ionic equation and (c) choose one of the following as the net ionic equation

Lead(II) nitrate + sodium chloride

- What is the net ionic equation for this reaction?
a. $\mathrm{Pb}^{2+}(a q)+2 \mathrm{NO}_{3}^{-}(a q) \longrightarrow \mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}(s)$
b. $\mathrm{Na}^{2+}(a q)+\mathrm{Cl}^{-}(a q) \longrightarrow \mathrm{NaCl}(s)$
c. $\mathrm{Pb}^{2+}(a q)+2 \mathrm{Cl}^{-}(a q) \longrightarrow \mathrm{PbCl}_{2}(s)$
d. $\mathrm{Na}^{+}(a q)+\mathrm{NO}_{3}^{-}(a q) \longrightarrow \mathrm{NaNO}_{3}(s)$

HW: Precipitation Reaction For the following, Write out (a) molecular reaction (b) total ionic equation and (c) choose one of the following as the net ionic equation $\begin{array}{ll}\text { Lead(II) nitrate + sodium chloride } & \begin{array}{l}\text { End 10/4 F, G sect } \\ \text { End } 10 / 7 \text { D section }\end{array}\end{array}$

- What is the net ionic equation for this reaction?
a. $\mathrm{Pb}^{2+}(a q)+2 \mathrm{NO}_{3}^{-}(a q) \longrightarrow \mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}(s)$
b. $\mathrm{Na}^{2+}(a q)+\mathrm{Cl}^{-}(a q) \longrightarrow \mathrm{NaCl}(s)$
c. $\mathrm{Pb}^{2+}(a q)+2 \mathrm{Cl}^{-}(a q) \longrightarrow \mathrm{PbCl}_{2}(s) *$
d. $\mathrm{Na}^{+}(a q)+\mathrm{NO}_{3}^{-}(a q) \longrightarrow \mathrm{NaNO}_{3}(s)$

Test II ends here.

10/7 Monday was just a review day - no new material covered - only questions \& reviewing quiz 2 answer keys (note D section had already seen the question on precipitation molecular, ionic and net ionic reaction on Thursday 10/3 their quiz date but we completed the HW in class on that HW problem for the D section on 10/7 - the answer for the precipitation problem was already posted on 10/5 before the D section did the HW problem in class for points)

Acids, Bases, and Neutralization Reactions

Acid (Arrhenius): dissociates in water to produce hydrogen ions, H^{+}
general rxn $\mathrm{HA}(a q) \longrightarrow \mathrm{H}^{+}(a q)+\mathrm{A}^{-}(a q)$
example $\mathrm{HCl}(a q) \longrightarrow \mathrm{H}^{+}(a q)+\mathrm{Cl}^{-}(a q)$
In water, acids produce hydronium ions, $\mathrm{H}_{3} \mathrm{O}^{+}$:

$$
\mathrm{HCl}(a q)+\mathrm{H}_{2} \mathrm{O}(a q) \longrightarrow \mathrm{H}_{3} \mathrm{O}^{+}(a q)+\mathrm{Cl}^{-}(a q)
$$

Acids, Bases, and Neutralization Reactions

Base (Arrhenius): dissociates in water to produce hydroxide ions, OH^{-}:
general rxn $\mathrm{MOH}(a q) \longrightarrow \mathrm{M}^{+}(a q)+\mathrm{OH}^{-}(a q)$
example

$$
\mathrm{NaOH}(a q) \longrightarrow \mathrm{Na}^{+}(a q)+\mathrm{OH}^{-}(a q)
$$

Ammonia is a weak base produces ammonium and hydroxide ions: (only weak base commonly seen)

$$
\mathrm{NH}_{3}(a q)+\mathrm{H}_{2} \mathrm{O}(a q) \longrightarrow \mathrm{NH}_{4}^{+}(a q)+\mathrm{OH}^{-}(a q)
$$

Acids, Bases, and Neutralization Reactions

TABLE 4.3 Some Common Acids and Bases

Strong	HClO_{4}	Perchloric acid	KOH	Potassium hydroxide	Strong
acid	$\mathrm{H}_{2} \mathrm{SO}_{4}$ *	Sulfuric acid	NaOH	Sodium hydroxide	base
	HBr *	Hydrobromic acid	$\mathrm{Ba}(\mathrm{OH})_{2}$	Barium hydroxide	
	$\begin{aligned} & \mathrm{HCl}_{*} \\ & \mathrm{HNO}_{3} * \end{aligned}$	Hydrochloric acid Nitric acid	$\mathrm{Ca}(\mathrm{OH})_{2}$	Calcium hydroxide	
	$\begin{aligned} & \mathrm{H}_{3} \mathrm{PO}_{4} * \\ & \mathrm{HF} * \end{aligned}$	Phosphoric acid Hydrofluoric acid	NH_{3}	Ammonia *	
Weak acid	$\begin{aligned} & \mathrm{HNO}_{2} \\ & \mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H} \end{aligned}$	Nitrous acid * Acetic acid			Weak base

Strong acids and strong bases are strong electrolytes. Weak acids and weak bases are weak electrolytes.
Know name, formula, whether strong/weak acid or base for * (most group 1A \& 2A hydroxides are strong bases if soluble)

Acids - characterized by \# H+ dissociation

$\mathrm{H}_{3} \mathrm{PO}_{4} \rightarrow 3 \mathrm{H}^{+}+\mathrm{PO}_{4}^{-3}$
$\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow 2 \mathrm{H}^{+}+\mathrm{SO}_{4}^{-2}$
$\mathrm{HBr} \rightarrow \mathrm{H}^{+}+\mathrm{Br}^{-}$
$\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H} \rightarrow \mathrm{H}^{+}+\mathrm{CH}_{3} \mathrm{CO}_{2}^{-}$ (acetic acid $-\operatorname{not} 4 \mathrm{H}+$)
triprotic
diprotic monoprotic monoprotic polyprotic acid = more than one hydrogen is acidic

Acids, Bases, and Neutralization Reactions

Naming Binary Acids (all halogens)
HCl hydrochloric acid
HBr hydrobromic acid
HF hydrofluoric acid (only weak halogen acid)
HI hydroiodic acid

Acids, Bases, and Neutralization Reactions

These acid-base neutralization reactions are doublereplacement reactions just like the precipitation reactions:
(exchange cation / anion partners)

double replacement reaction

Acids, Bases, and Neutralization Reactions

Write the molecular, ionic, and net ionic equations for the reaction of aqueous HBr and aqueous $\mathrm{Ba}(\mathrm{OH})_{2}$.

1. Write the chemical formulas of the products (use proper ionic rules for the salt to write neutral formula of the salt).

Acid Base Water Salt

Acids, Bases, and Neutralization Reactions

Write the molecular, ionic, and net ionic equations for the reaction of aqueous HBr and aqueous $\mathrm{Ba}(\mathrm{OH})_{2}$.
2. Molecular Equation: Balance the equation and predict the solubility of the salt in the products. (from solubility rules table)

$$
2 \mathrm{HBr}(\mathrm{aq})+\mathrm{Ba}(\mathrm{OH})_{2}(a q) \longrightarrow 2 \mathrm{H}_{2} \mathrm{O}(\Lambda)+\mathrm{BaBr}_{2}(a q)
$$

Use the solubility rules.

Acids, Bases, and Neutralization Reactions

Write the molecular, ionic, and net ionic equations for the reaction of aqueous HBr and aqueous $\mathrm{Ba}(\mathrm{OH})_{2}$.
3. Ionic Equation: Dissociate the strong acid and the soluble ionic compounds. (solid, liquid, gas compounds, weak acid written as molecular form/ia-do NOT dissociate)

$\mathrm{BaBr}_{2}(a q)$

Acids, Bases, and Neutralization Reactions

Write the molecular, ionic, and net ionic equations for the reaction of aqueous HBr and aqueous $\mathrm{Ba}(\mathrm{OH})_{2}$.
4. Net Ionic Equation: Eliminate the spectator ions from the ionic equation.
$2 \mathrm{H}^{+}(\mathrm{aq})+2 \mathrm{Br}^{-}(\mathrm{aq})+\mathrm{Ba}^{2+}(a q)+2 \mathrm{OH}^{-}(a q)$

$$
\longrightarrow 2 \mathrm{H}_{2} \mathrm{O}(\Lambda)+\mathrm{Ba}^{2+}(\mathrm{aq})+2 \mathrm{Br}^{-1}(\mathrm{aq})
$$

$2 \mathrm{H}^{+}(a q)+2 \mathrm{OH}^{-}(a q) \longrightarrow 2 \mathrm{H}_{2} \mathrm{O}(\Lambda)$

Net ionic equation for acid/base neutralization is almost always this (unless weak undissociated acid/base)

Acids, Bases, and Neutralization Reactions

Write the molecular, ionic, and net ionic equations for the reaction of aqueous NaOH and aqueous HF .

1. Write the chemical formulas of the products (use proper ionic rules for the salt to write neutral ionic formulas). (exchange cation anion partners)

$$
\mathrm{HF}(a q)+\mathrm{NaOH}(a q) \longrightarrow \mathrm{HOH}+\mathrm{NaF}
$$

Acid Base Water Salt

Acids, Bases, and Neutralization Reactions

Write the molecular, ionic, and net ionic equations for the reaction of aqueous NaOH and aqueous HF .
2. Molecular Equation: Balance the equation and predict the solubility of the salt in the products.

$$
\mathrm{HF}(a q)+\mathrm{NaOH}(a q) \longrightarrow \mathrm{H}_{2} \mathrm{O}(\Lambda)+\underbrace{\mathrm{NaF}(a q)}
$$

use the solubility rules.

Acids, Bases, and Neutralization Reactions

Write the molecular, ionic, and net ionic equations for the reaction of aqueous NaOH and aqueous HF .
3. Ionic Equation: Dissociate the soluble ionic compounds. (HF is a weak acid so does not dissociate)

$$
\mathrm{HF}(a q)+\overbrace{\mathrm{Na}^{+}(a q)+\mathrm{OH}^{-}(a q)}^{\mathrm{NaOH}(a q)} \longrightarrow \mathrm{H}_{2} \mathrm{O}(\Lambda)+\underbrace{\mathrm{Na}^{+}(a q)+\mathrm{F}^{-}(a q)}_{\mathrm{NaF}(a q)}
$$

Acids, Bases, and Neutralization Reactions

Write the molecular, ionic, and net ionic equations for the reaction of aqueous NaOH and aqueous HF.
4. Net lonic Equation: Eliminate the spectator ions from the ionic equation.
$\mathrm{HF}(\mathrm{aq})+\mathrm{Na}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) \longrightarrow \quad \mathrm{H}_{2} \mathrm{O}(\Lambda)+\mathrm{Na}^{+}(\mathrm{aq})+\mathrm{F}^{-}(a q)$

$$
\mathrm{HF}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) \longrightarrow \mathrm{H}_{2} \mathrm{O}(\Lambda)+\mathrm{F}^{-}(\mathrm{aq})
$$

HW: Acids, Bases, and Neutralization Reactions

Write the molecular, ionic, and net ionic equations for the reaction of aqueous $\mathrm{Ca}(\mathrm{OH})_{2}$ and aqueous H I.
molecular equation:
$\mathrm{Ca}(\mathrm{OH})_{2}+\mathrm{HI} \rightarrow+$
ionic equation
net ionic equation

Solution Stoichiometry(already know how to do

 combining 2 things you know - stoichiometry \& Molarity)What volume of $0.250 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ is needed to react with 50.0 mL of 0.100 M NaOH ? $10.0 \mathrm{~mL} \mathrm{H}_{2} \mathrm{SO}_{4}$
$\mathrm{H}_{2} \mathrm{SO}_{4}(a q)+2 \mathrm{NaOH}(a q) \longrightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}(a q)+2 \mathrm{H}_{2} \mathrm{O}(\Lambda)$
End 10/11 F F section
What volume of 0.250 M H Cl is needed to react with 50.0 mL of 0.100 M NaOH ? 20.0 mL HCl
$\mathrm{HCl}(a q)+\mathrm{NaOH}(a q) \longrightarrow \mathrm{NaCl}(a q)+\mathrm{H}_{2} \mathrm{O}(\Lambda)$

> End 10/10/19 D, G
> section

Solution Stoichiometry (short cut version)

What volume of 0.250 M H Cl is needed to react with 50.0 mL of 0.100 M NaOH ?

$$
\mathrm{HCl}(a q)+\mathrm{NaOH}(a q) \longrightarrow \mathrm{NaCl}(a q)+\mathrm{H}_{2} \mathrm{O}(!)
$$

Short cut: use $\quad \mathrm{M}_{\text {acid }} \mathrm{V}_{\text {acid }}=\mathrm{M}_{\text {base }} \mathrm{V}_{\text {base }}$
only works for $1: 1 \mathrm{acid} / \mathrm{base}$ reaction
$(0.250 \mathrm{M} \mathrm{HCl}) *\left(\mathrm{~V}_{\mathrm{HCl}}\right)=(0.100 \mathrm{M} \mathrm{NaOH}) *(50.0 \mathrm{~mL} \mathrm{NaOH})$

$$
\mathrm{V}_{\mathrm{HCl}}=\frac{(0.100 \mathrm{M} \mathrm{NaOH}) *(50.0 \mathrm{~mL} \mathrm{NaOH})}{0.250 \mathrm{M} \mathrm{H} \mathrm{Cl}}=20.0 \mathrm{~mL} \mathrm{HCl}
$$

HW: Solution Stoichiometry

What volume of $2.25 \mathrm{M} \mathrm{Ca}(\mathrm{OH})_{2}$ is needed to react with 25.0 mL of 0.100 M H Cl ?

$$
2 \mathrm{HCl}(a q)+\mathrm{Ca}(\mathrm{OH})_{2(}(\mathrm{aq}) \longrightarrow \mathrm{CaCl}_{2}(a q)+2 \mathrm{HOH}(\Lambda)
$$

HW: Solution Stoichiometry

What volume of $2.25 \mathrm{M} \mathrm{Ca}(\mathrm{OH})_{2}$ is needed to react with 25.0 mL of 0.100 M H Cl ?

$$
\left.2 \mathrm{HCl}(a q)+\mathrm{Ca}(\mathrm{OH})_{2(} \mathrm{aq}\right) \longrightarrow \mathrm{CaCl}_{2}(a q)+2 \mathrm{HOH}(\Lambda)
$$

HCl soln $\quad 1000 \mathrm{~mL} \mathrm{HCl}$ soln $2 \mathrm{~mol} \mathrm{H} \mathrm{Cl} \quad 2.25$ moles $\mathrm{Ca}(\mathrm{OH})_{2}$
$=0.556 \mathrm{~mL} \mathrm{Ca}(\mathrm{OH})_{2}$ solution

Measuring the Concentration of a Solution: Titration

Titration: A procedure for determining the concentration using a second solution with known concentration

$$
\mathrm{HCl}(a q)+\mathrm{NaOH}(a q) \longrightarrow \mathrm{NaCl}(a q)+\mathrm{H}_{2} \mathrm{O}(\Lambda)
$$

Short cut: use $\quad M_{\text {acid }} V_{\text {acid }}=M_{\text {base }} V_{\text {base }}$

How can you tell when the reaction is complete? Equivalence point - point where you have the same amount H^{+}and OH^{-}

Indicator: Used to mark the equivalence point changes color at the equivalence point

Measuring the Concentration of a Solution: Titration

A measured volume of acid solution is placed in a flask, and phenolphthalein indicator is added.

Base solution of known concentration is added from a buret until the indicator changes color. Reading the volume of base from the buret allows calculation of the acid concentration.

Oxidation-Reduction (Redox) Reactions

$2 \mathrm{Mg}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{MgO}(\mathrm{s})$

Oxidation-Reduction (Redox) Reactions

$2 \mathrm{P}(s)+3 \mathrm{Br}_{2}(\Lambda) \longrightarrow 2 \mathrm{PBr}_{3}(\Lambda)$

Oxidation-Reduction (Redox) Reactions

$$
\begin{aligned}
& \text { zero minus electrons }+3 \\
& 4 \mathrm{Fe}(s)+3 \mathrm{O}_{2}(g) \longrightarrow 2 \mathrm{Fe}_{2} \mathrm{O}_{3}(s)
\end{aligned}
$$

Rusting of iron: an oxidation of Fe

Oxidation

$\mathrm{A}^{2-} \longrightarrow \mathrm{A}^{-}+$electron
$\mathrm{A}^{-} \longrightarrow \mathrm{A}+$ electron
$\mathrm{A} \longrightarrow \mathrm{A}^{+}+$electron
$\mathrm{A}^{+} \longrightarrow \mathrm{A}^{2+}+$ electron

Reduction

lose electrons

Reactant A might be: a neutral atom, a monatomic ion, a polyatomic ion, or a molecule.
gain electrons
$2 \mathrm{Fe}_{2} \mathrm{O}_{3}(s)+3 \mathrm{C}(s) \longrightarrow 4 \mathrm{Fe}(s)+3 \mathrm{CO}_{2}(g)$
Manufacture of iron: a reduction of $\mathrm{Fe}_{2} \mathrm{O}_{3}$

Oxidation-Reduction (Redox) Reactions

Oxidation: The loss of one or more electrons by a substance, whether element, compound, or ion

Reduction: The gain of one or more electrons by a substance (memorize as add negative reduced ox number)

Oxidation-Reduction (Redox) Reaction: Any process in which electrons are transferred from one substance to another

Oxidation-Reduction (Redox) Reactions

Oxidation Number (State): A value that indicates whether an atom is neutral, electron-rich, or electron-poor (These rules are on the memorize list on departmental syllabus.)

Rules for Assigning Oxidation Numbers

1. An atom in its elemental state has an oxidation number of 0 (zero).

Oxidation number 0

Oxidation-Reduction (Redox) Reactions

2. An atom in a monatomic ion has an oxidation number identical to its charge.
(group 1A to 3A: group \#) or
(group 7A to 5A: group \#-8)

$$
\begin{array}{cccccc}
1 \mathrm{~A} & 2 \mathrm{~A} & 3 \mathrm{~A} & 7 \mathrm{~A} & 6 \mathrm{~A} & 5 \mathrm{~A} \\
\mathrm{Na}^{+} & \mathrm{Ca}^{2+} & \mathrm{Al}^{3+} & \mathrm{Cl}^{-} & \mathrm{O}^{-} & \mathrm{N}^{-} \\
+1 & +2 & +3 & -1 & -2 & -3
\end{array}
$$

Oxidation-Reduction (Redox) Reactions

3. An atom in a polyatomic ion or in a molecular compound usually has the same oxidation number it would have if it were a monatomic ion.
a) Hydrogen can be either +1 or -1 .

$$
\underset{\mid}{(\mathrm{H}-\mathrm{O})^{1-}}
$$

b) Oxygen usually has an oxidation number of -2 .

Oxidation-Reduction (Redox) Reactions

3. c) Halogens usually have an oxidation number of -1 .

$$
\stackrel{\mathrm{H}-\mathrm{Cl}}{\uparrow}{ }_{+1}
$$

Oxidation-Reduction (Redox) Reactions

4. The sum of the oxidation numbers is 0 for a neutral compound and is equal to the net charge for a polyatomic ion.

End 10/16 W D section

$$
2(+1)+(?)+4(-2)=0(\text { net charge })
$$

$$
S=?=+6
$$

$2(?)+7(-2)=-2($ net charge $)$
$\mathrm{Cr}=?=+6$

What is the oxidation state of the following.
a. Na
b. H_{2}
element zero
element zero
c. $\mathrm{NaCl} \mathrm{Na}+1(\mathrm{gp} 1 \mathrm{~A}) \quad 7-8=-1(\mathrm{gp} 7 \mathrm{~A})$
d. $\mathrm{HNO}_{3} \mathrm{H}+1(\mathrm{gp} 1 \mathrm{~A}), \quad \mathrm{O}-2(\mathrm{gp} 6 \mathrm{~A})$
ox state $\mathrm{N}=$ variable N , calculate

$$
\text { zero }=+1+\mathrm{N}+3^{*}(-2)
$$

algebra $\quad \mathrm{N}=+6-1=5$

HW: What is the oxidation state of the following.

a. Cl_{2}
b. Fe

End 10/16 F section,
G section
c. $\mathrm{Al} \mathrm{Cl}_{3}$
d. PO_{4}^{-3}

Identifying Redox Reactions

Oxidizing Agent (is reduced)
Causes oxidation
Gains one or more electrons
Undergoes reduction
Oxidation number of atom decreases.
(becomes more negative)
Reducing Agent (is oxidized)
Causes reduction
Loses one or more electrons
Undergoes oxidation
Oxidation number of atom increases.
(becomes more positive)

Identifying Redox Reactions

this chapter - only responsible for recognizing oxidation/reduction \& oxidizing agent \& reducing agent - NOT for balancing redox equations (chapter 18)

Oxidizing Agent

Reducing Agent

Identifying Redox Reactions

Oxidizing Agent
Reduction

Reducing Agent
Oxidation

HW: Oxidation or Reduction (reducing agent / oxidizing agent)
(a) Assign ox states of $\mathrm{Zn} \& \mathrm{H}$
(b) assign oxidation or reduction to brackets

$$
\mathrm{Zn}+2 \mathrm{HCl} \rightarrow \mathrm{ZnCl}_{2}+\mathrm{H}_{2}
$$

HW: Oxidation or Reduction
(reducing agent / oxidizing agent)
(a) Assign ox states of $\mathrm{Zn} \& \mathrm{H}$
(b) assign oxidation or reduction to brackets

10/17 R - D section

The Activity Series of the Elements

Iron loses electron to copper

$\mathrm{Fe}(s)+\mathrm{Cu}^{2+}(a q) \longrightarrow \mathrm{Fe}^{2+}(a q)+\mathrm{Cu}(s)$
The iron nail reduces Cu^{2+} ions and
becomes coated with metallic copper.

The Activity Series of the Elements

$$
\mathrm{Fe}(s)+\mathrm{Cu}^{2+}(a q) \longrightarrow \mathrm{Fe}^{2+}(a q)+\mathrm{Cu}(s)
$$

TABLIE 4.5 A Partial Activity Series of the Elements
Oxidation Reaction

Elements that are higher up in the table (reaction goes \rightarrow) are more likely to be oxidized (lose e).

Thus, any element higher in the activity series will reduce (reducing agent) (lose e to) the ion of any element lower in the activity series.

The Activity Series of the Elements

$$
\begin{gather*}
\mathrm{Cu}(s)+2 \mathrm{Ag}^{+}(a q) \longrightarrow \mathrm{Cu}^{2+}(a q)+2 \mathrm{Ag}(s)(\mathrm{a}) \tag{a}\\
2 \mathrm{Ag}(s)+\mathrm{Cu}^{2+}(a q) \longrightarrow 2 \mathrm{Ag}^{+}(a q)+\mathrm{Cu}(s) \quad(\mathrm{b}) \tag{b}\\
\text { Which one of these reactions will occur? }
\end{gather*}
$$

TABLE 4.5 A Partial Activity Series of the Elements

Cu is above Ag in activity series $\mathrm{Cu} \rightarrow \quad \mathrm{Ag} \leftarrow$

The Activity Series of the Elements

$$
\begin{gathered}
\mathrm{Cu}(s)+2 \mathrm{Ag}^{+}(a q) \longrightarrow \mathrm{Cu}^{2+}(\mathrm{aq})+2 \mathrm{Ag}(s)(\mathrm{a})^{*} \\
2 \mathrm{Ag}(s)+\mathrm{Cu}^{2+}(a q) \longrightarrow 2 \mathrm{Ag}^{+}(a q)+\mathrm{Cu}(s)(\mathrm{b}) \\
\text { Which one of these reactions will occur? }
\end{gathered}
$$

TABLE 4.5 A Partial Activity Series of the Elements

Cu is above Ag in activity series $\mathrm{Cu} \rightarrow \quad \mathrm{Ag} \leftarrow$

The Activity Series of the Elements

$$
\mathrm{Cu}(s)+2 \mathrm{Ag}^{+}(a q) \longrightarrow \mathrm{Cu}^{2+}(a q)+2 \mathrm{Ag}(s)
$$

copper is above silver in activity series chart
(copper loses electron and silver gets electron)

Redox Titrations

$5 \mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}(a q)+2 \mathrm{MnO}_{4}^{-}(a q)+6 \mathrm{H}^{+}(a q)$
 $\longrightarrow 10 \mathrm{CO}_{2}(g)+2 \mathrm{Mn}^{2+}(a q)+8 \mathrm{H}_{2} \mathrm{O}()$

Aqueous KMnO_{4} of unknown concentration is added from a buret until ...

Redox Titrations (probably will not have on exam/quiz)

A solution is prepared with 0.2585 g of oxalic acid, $\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4} .22 .35 \mathrm{~mL}$ of an unknown solution of potassium permanganate is needed to titrate the solution. What is the concentration of the potassium permanganate solution? (already know how to do this: if given balanced reaction, just stoichiometry \& molarity problem)
$5 \mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}(\mathrm{aq})+2 \mathrm{MnO}_{4}^{-}(\mathrm{aq})+6 \mathrm{H}^{+}(\mathrm{aq})$

$$
\longrightarrow 10 \mathrm{CO}_{2}(g)+2 \mathrm{Mn}^{2+}(a q)+8 \mathrm{H}_{2} \mathrm{O}()
$$

Redox Titrations

$5 \mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}(\mathrm{aq})+2 \mathrm{MnO}_{4}^{-}(\mathrm{aq})+6 \mathrm{H}^{+}(\mathrm{aq})$

$$
\longrightarrow 10 \mathrm{CO}_{2}(g)+2 \mathrm{Mn}^{2+}(a q)+8 \mathrm{H}_{2} \mathrm{O}(\Lambda)
$$

Moles of $\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$ available:

$$
0.2585 \mathrm{~g} \mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4} \times \frac{1 \mathrm{~mol}}{90.04 \mathrm{~g}}=0.002871 \mathrm{~mol} \mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}
$$

Moles of KMnO_{4} reacted:
$0.002871 \mathrm{~mol} \mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4} \times \frac{2 \mathrm{~mol} \mathrm{KMnO}_{4}}{5 \mathrm{~mol} \mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}}=0.001148 \mathrm{~mol} \mathrm{KMnO} 4$

Redox Titrations

$5 \mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}(a q)+2 \mathrm{MnO}_{4}^{-}(a q)+6 \mathrm{H}^{+}(a q)$

$$
\longrightarrow 10 \mathrm{CO}_{2}(g)+2 \mathrm{Mn}^{2+}(a q)+8 \mathrm{H}_{2} \mathrm{O}(\Lambda)
$$

Concentration of KMnO_{4} solution:

$$
\frac{0.001148 \mathrm{~mol} \mathrm{KMnO}_{4}}{22.35 \mathrm{~mL}} \times \frac{1000 \mathrm{~mL}}{1 \mathrm{~L}}=0.05136 \mathrm{M} \mathrm{KMnO}_{4}
$$

