

Lecture Presentation Chapter 5 Periodicity and the Electronic Structure of Atoms

HW: 5.1, 5.2, 5.3, 5.13, 5.15, 5.16, 5.17, 5.18, 5.26, 5.28, 5.36, 5.70, 5.72, 5.74, 5.82, 5.90, 5.94, 5.96, 5.106, 5.108

> John E. McMurry Robert C. Fay

The Nature of Radiant Energy and the Electromagnetic Spectrum (wave property)

The Nature of Radiant Energy and the Electromagnetic Spectrum

Waves in the X ray region have a length that is approximately the same as the diameter of an atom (10^{-10} m) .

The Nature of Radiant Energy and the Electromagnetic Spectrum

Wavelength × Frequency = Speed

λ	×	V	=	С
m		1 or Hz		m
		S		S

c - speed of light (speed of all electromagnetic radiation), constant $c = 3.00 \times 10^8 \frac{m}{s}$

The Nature of Radiant Energy and the Electromagnetic Spectrum

The light blue glow given off by mercury streetlamps has a frequency of 6.88 × 10^{14} s⁻¹ (or Hz). What is the wavelength in nanometers? ($\lambda v = c$)

Particlelike Properties of Radiant Energy: The Photoelectric Effect and Planck's Postulate (particle property)

Photoelectric Effect: hit metal surface with light of certain energy kicks out electron from the metal. (frequency of the light used for photoelectric effect is different for each metal) (by analogy - picture shows ping pong balls don't break glass but baseball does)

End D section 10/21 Monday

Particlelike Properties of Radiant Energy: The **Photoelectric Effect and Planck's Postulate**

A plot of the number of electrons ejected from a metal surface versus light frequency shows a threshold value.

Number of electrons ejected

Increasing the intensity of the light while keeping the frequency constant increases the number of ejected electrons but does not change the threshold

Particlelike Properties of Radiant Energy: The Photoelectric Effect and Planck's Postulate

$$\frac{E = hv}{\lambda} = \frac{hc}{\lambda}$$
 Energy of one photon

h (Planck's constant) = 6.626×10^{-34} J s (above equation gives energy of one photon – somultiply energy by Avogadro's # to get energy per mole)

higher energy = higher frequency (shorter wavelength) $E \uparrow v \uparrow$

Particlelike Properties of Radiant Energy: The Photoelectric Effect and Planck's Postulate

$$E = hv = \frac{hc}{\lambda}$$

h (Planck's constant) = 6.626×10^{-34} J s (above equation gives energy of one photon – somultiply energy by Avogadro's # to get energy per mole)

Example: What is the energy in J/mole for $v = 3.35 \times 10^8$ Hz (radar waves) ? (given frequency or wavelength – can get energy)

 $E = (6.626 \times 10^{-34} \text{ J s})(3.35 \times 10^8/\text{s}) = 2.22 \times 10^{-25} \text{ J for one photon}$

energy for one mole of photons = $2.22 \times 10^{-25} \text{ J/photon} * 6.022 \times 10^{23} \text{ photon/mol} = 0.134 \text{ J/mol}$

The Interaction of Radiant Energy with Atoms: Line Spectra – hit atom with energy, get line spectrum

Line Spectrum: A series of discrete lines on an otherwise dark background as a result of light emitted by an excited atom

A wave function is characterized by three parameters called **quantum numbers**: *n*, *l*, and m_l .

<u>Quantum numbers define where electron is located with</u> some probability. (because of Heisenburg Uncertainty Principal – can't tell exactly the electron's position & electron's velocity, electron is a blur)

Electron can move to lower energy level inside the atom (& release light) OR can move to higher energy level when the electron is hit with light (& absorb light)

Principal Quantum Number (n)

- Describes the size and energy level of the orbital
- <u>shell (period #)</u>
- Positive integer (*n* = 1, 2, 3, 4, …)
- larger n
 - higher energy
 - larger distance of the e⁻ from the nucleus

Angular-Momentum Quantum Number (1) {for n, l = 0 to (n-1)}

- Defines the three-dimensional shape of the orbital
- subshell (s,p,d,f regions of the periodic table)

- If n = 2, then l = 0 or 1. (n-1 = 1)
- If n = 3, then l = 0, 1, or 2 (n-1 = 2)•
- nickname letters are (subshell notation)
 - l = 0 s (sharp) (memorize spdf)
 - l = 2 d (diffuse)
 - l = 3 f (fundamental)

- I = 1 p (principal) (do not memorize)

Magnetic Quantum Number (m,)

- Defines the spatial orientation of the orbital
- For *I*, $m_1 = -I \dots 0 \dots +I$.
- orbitals within subshell (holds 2 electrons maximum in each orbital)

• If l = 1, then $m_l = -1$, 0, or 1. (p subshell has 3 orbitals $-p_x$, p_y , p_z)

• If l = 2, then $m_l = -2, -1, 0, 1$, or 2. (d subshell has 5 orbitals $-d_{xy}, d_{xz}, d_{yz}, d_z^2, d_{x2-y2}$)

TABLE 5.2 Allowed Combinations of Quantum Numbers *n*, *l*, and *m_l* for the First Four Shells

11	1	111.	Orbital Notation	Number of Orbitals	Number of Orbitals in Shell
<i>n</i>	L	m	Notation	III Subsiten	Orbitals in Shen
1	0	0	1s	1	1
2	0	0	2 <i>s</i>	1	4
2	1	-1, 0, +1	2 <i>p</i>	3	4
	0	0	35	1	
3	1	-1, 0, +1	3р	3	9
	2	-2, -1, 0, +1, +2	3 <i>d</i>	5	
	0	0	4 <i>s</i>	1	
4	1	-1, 0, +1	4p	3	16
1	2	-2, -1, 0, +1, +2	4d	5	
	3	-3, -2, -1, 0, +1, +2, +3	4f	7	

Example: Identify the possible values for each of the three quantum numbers for a 4*p* orbital. (4 is n, p is *I*, so question is asking what are m₁ values given n & *I*)

Example: Identify the possible values for each of the three quantum numbers for a 4*p* orbital.

$$n = 4$$
 $l = 1 (p)$

For I = 1, what are possible m_l values ? (-1...0...+l)

 $m_l = -1$, 0, or 1 (3 orbitals within the p subshell within the n=4 shell)

For n = 3 (principal quantum #), what are all possible angular momentum quantum # (l values){ l = 0 to (n-1)}

For l = 2, what are all possible magnetic quantum # (m_l) values {m_l = -l,...0 ...+l} End F,G section 10/21Monday

For l = 0, 1, 2, 3 what is the letter nickname designation (question typo F,G class NOT m_l but l)

$$0 = _ 1 = _ 2 = _ 3 = _$$

The Shapes of Orbitals – s orbitals are all spherical (2s has one node, 3s has 2 nodes)

Node: A surface of zero probability for electron

The Shapes of Orbitals

When a rope is fixed at one end and vibrated rapidly at the other, a standing wave is generated.

The wave has two phases with different algebraic signs, + and -, separated by zero-amplitude regions, called *nodes*.

Node: A surface of zero probability for finding the electron

The Shapes of Orbitals – p orbital looks like dumbell

Each *p* orbital has two lobes of high electron probability separated by a nodal plane passing through the nucleus.

The **different colors** of the lobes represent different algebraic signs, analogous to the different phases of a wave.

cartesian coordinates – x,y,z

Electron Spin and the Pauli Exclusion Principle

Electrons have spin - results in tiny magnetic field & spin quantum number (m_s) . $(+\frac{1}{2} - \frac{1}{2})$

Pauli Exclusion Principle: No two electrons in an atom can have the same four quantum numbers.

Electron Spin and the Pauli Exclusion Principle

Pauli Exclusion Principle: No two electrons in an atom can have the same four quantum numbers. (electron with 4 names – each e in atom has unique name)

Which figure violates Pauli ?

Let's say these are both 2p

Electron Spin and the Pauli Exclusion Principle Pauli Exclusion Principle: No two electrons in an atom can have the same four quantum numbers. (electron with 4 names – each e in atom has unique name) (note: p_x is not defined to always be -1)

Orbital Energy Levels in Multielectron Atoms

Effective Nuclear Charge (Z_{eff}) : The nuclear charge actually felt by an electron (Z actual is charge of the nucleus)

Electron Configuration: A description of which orbitalsare occupied by electronsEnd D section 10/23/19

Degenerate Orbitals: Orbitals that have the same energy level—for example, the 3 *p* orbitals in a given subshell, 5 d orbitals in a given subshell

Ground-State Electron Configuration: The lowestenergy electron configuration

Aufbau Principle ("building up"): A guide for determining the filling order of orbitals

Rule of the aufbau principle:

- 1. Lower-energy orbitals fill before higher-energy orbitals.
- 2. An orbital can hold only two electrons, which must have opposite spins (Pauli exclusion principle).
- 3. If two or more degenerate orbitals are available, follow Hund's rule.

Hund's Rule: If two orbitals have the same energy (degenerate orbitals within the same subshell) – add e until all degenerate orbitals are half full and then add 2nd electrons into orbitals (example 3 p degenerate orbitals)

Hund's Rule: If two orbitals have the same energy (degenerate orbitals within the same subshell) – add e until all degenerate orbitals are half full and then add 2nd electrons into orbitals (example 3 p degenerate orbitals)

Which violates Hund ?

Hund's Rule: If two orbitals have the same energy (degenerate orbitals within the same subshell) – add e until all degenerate orbitals are half full and then add 2nd electrons into orbitals (example 3 p degenerate orbitals)

(this diagram does not show the individual degenerate orbitals within the subshells)

(b) Multielectron atoms

(a) Hydrogen

Electron Configuration

H: $1s^1 \longrightarrow 1$ electron (# of electron) s orbital (/ = 0) n = 1

Get <u>electron configuration</u> from <u>position of element</u> in <u>periodic table</u>.

n = period number (shell)

s (or choose s,p,d,f) is from regions of periodic table (subshell)

electrons - one move to right in periodic table = one more electron
(what kind of electron ? from position of element in periodic table)

	S	blo	ck .		What is outermost					рt	lock	ζ							
		A 	·]		el	ectr	on	orb	ital	?								7A	_8A
	1	H 1.008	2 A	-										2 11	4 A	S 4	(A		2 He
	2	3 Li 6.94	4 Be 9.01	dt	lock	a n-	-1							5 B 10.81	6 C 12.011	7 7 14.01	8 0 16.00	9 F 19.00	10 Ne 20.18
	3	11 Na 22.99	12 Mg 24.31	<u>3</u> B	43	<u>5B</u>	<u>6</u> B	<u>96</u>		8B		13	2B	13 Al 26.98	14 Si 28.09	15 [.] P 30.97	16 S 32.06	17 Cl 35.45	18 Ar 39.95
	4	19 K 39.10	20 Ca 40.08	21 Sc 44.96	22 Ti 47.90	23 V 50.94	24 Cr 52.00	25 Mn 54.94	26 Fe 55.85	27 Co 58.93	28 Ni 58.71	29 Cu 63.55	30 Zn 65.37	31 Ga 69.72	32 Ge 72.59	33 As 74.92	34 Se 78.96	35 Br 79.90	³⁶ Kr 83.80
	5	37 Rb 85.47	38 Sr 87.62	39 ¥ 88.91	40 Zr 91.22 ·	41 Nb 92.91	42 Mo 95.94	43 Tc 98.91	44 Ru 101.07	45 Rh 102.91	46 Pd 106.4	47 Ag 107.87	48 Cd 112.40	49 In 114.82	50 Sn 118.69	sı Sb 121.75	52 Te 127.60	53 I 126.90	54 Xe 131.30
	6	55 Cs 132.91	56 Ba 137.34	57 La 138.91	72 Hf 178.49	73 Ta 180.95	74 W 183.85	75 Re 186.2	76 Os . 190.2	77 Ir 192.2	78 Pt 195.09	79 Au 196.97	80 Hg 200.59	81 TI 204.37	82 Pb 207.19	83 Bi 208.98	84 Po (209)	85 At (210)	86 Rn (222)
	7	87 Fr (223)	88 Ra 226.03	89 Ac (227)	104 Unq* (261)	105 Unp* (262)	106 Unh* (263)	107 Uns* (262)	108 Uno* (265)	109 Una ⁴ (266)									
fbl	block Lanthanides Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu																		
IUI		~1X		90	0.12 14	0.91 14	4.24 (1	45) 1.	50.35 4	95	157.25 96	158.93 97	162.50	164.93 99	167.26 100	168.93 101	173.04 102	174.97 103	-
n-2	2 *:	Symbol (Actinid	es 23	n 1 2,04 (2 onal.	⁷ a (31) 23	U [8.03 (2	NP 37) (L'U 244)	Am (243)	Cm (247) Num	1249) (249) bers in r	CI (249) parenthes	ES (254) es: availa	Em (257) able radio	(258)	(259)	(260)	half-lif

.* .

Electron Configuration

H: 1*s*¹

Electron Configuration

- **H:** 1*s*¹
- **He:** 1*s*²

Lowest energy to highest energy

Electron Configuration

- **H:** 1*s*¹
- **He:** 1*s*²
- Li: $1s^2 2s^1$

	Electron Configuration	Orbital-Filling Diagram
H:	1 <i>s</i> ¹	<u>†</u> 1s

He: $1s^2$

Li: $1s^2 2s^1$

N: $1s^2 2s^2 2p^3$

	Electron Configuration	Orbital-Filling Diagram
H:	1s ¹	<u>†</u> 1s
He:	1 <i>s</i> ²	<u>†↓</u> 1s

Li: $1s^2 2s^1$

N: $1s^2 2s^2 2p^3$

	Electron Configuration	Orbital-Filling Diagram
H:	1 s ¹	<u>†</u> 1s
He:	1 <i>s</i> ²	<u>1↓</u> 1s
Li:	1 <i>s</i> ² 2 <i>s</i> ¹	$\frac{\uparrow\downarrow}{1s} \frac{\uparrow}{2s}$

N: $1s^2 2s^2 2p^3$

	Electron Configuration	Orbital-Filling Diagram		
H:	1s ¹	<u>†</u> 1s		
He:	1 <i>s</i> ²	<u>†↓</u> 1s		
Li:	1 <i>s</i> ² 2 <i>s</i> ¹	$\frac{\uparrow\downarrow}{1s} \frac{\uparrow}{2s}$		
N:	1 <i>s</i> ² 2 <i>s</i> ² 2 <i>p</i> ³	$\frac{\uparrow\downarrow}{1s} \frac{\uparrow\downarrow}{2s} \frac{\uparrow}{2p} \frac{\uparrow}{2p}$		

Electron Configuration

Give the electron configuration of the element Ca, S and Ti (starting from $1s^2$ electrons in the format shown above)

End 10/23 Wednesday F & G section

0	Electron Configuration	Orbital-Filling Diagram						
N:	1 <i>s</i> ² 2 <i>s</i> ² 2 <i>p</i> ³	<u>1↓</u> 1s	<u>†↓</u> 2s	$\frac{\uparrow}{2p}\frac{\uparrow}{2p}$				

Give the orbital filling diagram for the element Ca, S and Ti (starting from $1s^2$ electrons in the format shown above)

3d 14 45 4, 16 3/2 AK AK AK 3p 11 11 11 3 11 1 1 11 35 14 35 16 2p 11 11 11 2p 1k 1k 1k 2 1k 1k 1k 2, 1 25 10 15 11 1516 15 1 Time Ca 5

Electron Configuration

Na: $1s^2 2s^2 2p^6 3s^1$

Shorthand Configuration

Na:

^Y Ne configuration Shorthand Configuration

[Ne] 3s¹

Electron Configuration

Na: $1s^2 2s^2 2p^6 3s^1$

Shorthand Configuration

[Ne] 3s¹

P: $\underbrace{1s^2 2s^2 2p^6}_{3s^2 3s^2 3p^3}$

Ne configuration

Na: $1s^2 2s^2 2p^6 3s^1$

Shorthand Configuration

[Ne] 3s¹

Ne configuration

[Ne] $3s^2 3p^3$

	Electron Configuration	Shorthand Configuration
Na:	1 <i>s</i> ² 2 <i>s</i> ² 2 <i>p</i> ⁶ 3 <i>s</i> ¹	[Ne] 3s ¹
P:	1 <i>s</i> ² 2 <i>s</i> ² 2 <i>p</i> ⁶ 3 <i>s</i> ² 3 <i>p</i> ³	[Ne] 3 <i>s</i> ² 3 <i>p</i> ³
K:	$1s^2 2s^2 2p^6 3s^2 3p^6 4s^1$	
	Ar configuration	

	Electron Configuration	Shorthand Configuration
Na:	1 <i>s</i> ² 2 <i>s</i> ² 2 <i>p</i> ⁶ 3 <i>s</i> ¹	[Ne] 3 <i>s</i> 1
P:	1 <i>s</i> ² 2 <i>s</i> ² 2 <i>p</i> ⁶ 3 <i>s</i> ² 3 <i>p</i> ³	[Ne] 3 <i>s</i> ² 3 <i>p</i> ³
K:	$1s^2 2s^2 2p^6 3s^2 3p^6 4s^1$	[Ar] 4s ¹
	Ar configuration	

	Electron Configuration	Shorthand Configuration
Na:	1 <i>s</i> ² 2 <i>s</i> ² 2 <i>p</i> ⁶ 3 <i>s</i> ¹	[Ne] 3s ¹
P:	1s² 2s² 2p ⁶ 3s² 3p ³	[Ne] 3 <i>s</i> ² 3 <i>p</i> ³
K:	1 <i>s</i> ² 2 <i>s</i> ² 2 <i>p</i> ⁶ 3 <i>s</i> ² 3 <i>p</i> ⁶ 4 <i>s</i> ¹	[Ar] 4s ¹
Sc:	$1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d$	¹ [Ar] 4 <i>s</i> ² 3 <i>d</i> ¹
	Ar configuration	

Anomalous Electron Configurations (for transition metals near d⁵ or d¹⁰)

	Expected Configuration	Actual Configuration	
Cr:	[Ar] 4 <i>s</i> ² 3 <i>d</i> ⁴	[Ar] 4s¹ 3 <i>d</i> ⁵	End 10/24 R D section
Cu:	[Ar] 4 <i>s</i> ² 3 <i>d</i> 9	[Ar] 4s ¹ 3d ¹⁰	

		Expect Configur	ted ation	Ao Config	ctual guratic	on			
	Cr:	[Ar] 4 <i>s</i> ²́	² 3ď ⁴	[Ar]	5				
`↓	1	1 1 1		1	1	1	1	1	1
S	$\overline{3d}$	3d 3d 3	d 3d	$\overline{4s}$	3d	3d	3d	3d	3d

	Cu:	[Ar] 4	s ² 3	<i>d</i> 9	_	[Ar] 4s ¹ 3d ¹⁰								
<u>†↓</u>	<u> </u>		↑ ↓	1		<u>†</u>	1↓	1↓	1↓	†↓	↑ ↓			
4s	3d 3	d 3d	3d	3d		4s	3d	3d	3d	3d	3d			

Electron configuration for all elements for last set of

 $\frac{1}{1A}$ electrons (for main group elements – NOT valence electrons) $\frac{18}{8A}$

H $1s^1$	2 2A											13 3A	14 4A	15 5A	16 6A	17 7A	He 1s ²
3 Li	4 Be	a	anamolous electron configuration											7 N	8 0	9 F	10 Ne
2s 11 Na 3s ¹	2s 12 Mg 3s ²	3 3B	4 4B	5 5B	6 6B	7 7B	8	9 — 8B —	10	11 1B	12 2B	25 2p 13 A1 3s ² 3p ¹	2s ² 2p ² 14 Si 3s ² 3p ²	25 2p 15 P 3s ² 3p ³	2s ² 2p 16 S 3s ² 3p ⁴	2s 2p 17 Cl 3s ² 3p ⁵	2s 2p 18 Ar 3s ² 3p ⁶
19 K 4s ¹	20 Ca 4s ²	21 Sc 4s ² 3d ¹	22 Ti $4s^23d^2$	23 V $4s^23d^3$	24 Cr 4s ¹ 3d ⁵	25 Mn 4s ² 3d ⁵	26 Fe 4s ² 3d ⁶	27 Co 4s ² 3d ⁷	28 Ni 4s ² 3d ⁸	29 Cu 4s ¹ 3d ¹⁰	$ \begin{array}{r} 30 \\ Zn \\ 4s^2 3d^{10} \end{array} $	$31 \\ Ga \\ 4s^2 3d^{10} 4p^1$	32 Ge 4s ² 3d ¹⁰ 4p ²	$ 33 \\ As \\ 4s^2 3d^{10} 4p^3 $	34 Se 4s ² 3d ¹⁰ 4p ⁴	35 Br $4s^23d^{10}4p^5$	36 Kr 4s ² 3d ¹⁰ 4p ⁶
37 Rb _{5s} 1	38 Sr 5s ²	39 Y 5s ² 4d ¹	40 Zr $5s^24d^2$	41 Nb $5s^{1}4d^{4}$	42 Mo 5s ¹ 4d ⁵	43 Tc 5s ² 4d ⁵	44 Ru 5s ¹ 4d ⁷	45 Rh ^{55¹4d⁸}	46 Pd 4d ¹⁰	47 Ag 5s ¹ 4d ¹⁰	48 Cd 5s ² 4d ¹⁰	$ 49 \\ In \\ 5s^2 4d^{10}5p^1 $		$51 \\ Sb \\ 5s^2 4d^{10} 5p^3$	52 Te 5s ² 4d ¹⁰ 5p ⁴	53 1 5s ² 4d ¹⁰ 5p ⁵	54 Xe $5s^24d^{10}5p^6$
55 Cs 6s ¹	56 Ba 6s ²	71 Lu 6s ² 4f ¹⁴ 5d ¹	72 Hf 6s ² 4f ¹⁴ 5d ²	73 Ta 6s ² 4f ¹⁴ 5d ³	74 W 6s ² 4f ¹⁴ 5d ⁴	75 Re 6s ² 4f ¹⁴ 5d ⁵	76 Os 6s ² 4f ¹⁴ 5d ⁶	77 Ir 6s ² 4f ¹⁴ 5d ⁷	$78 \\ Pt \\ 6s^{1}4f^{14}5d^{9}$	79 Au 6s ¹ 4f ¹⁴ 5d ¹⁰	80 Hg 6s ² 4f ¹⁴ 5d ¹⁰	81 TI 6s ² 4f ¹⁴ 5d ¹⁰ 6p	82 Pb 6s ² 4f ¹⁴ 5d ¹⁰ 6p ²	83 Bi ² 6s ² 4f ¹⁴ 5d ¹⁰ 6p ³	84 Po ³ 6s ² 4f ¹⁴ 5d ¹⁰ 6p	$85 \\ At \\ 6s^2 4f^{14} 5d^{10} 6p^{10}$	86 Rn ⁵ 6s ² 4f ¹⁴ 5d ¹⁰ 6p
87 Fr _{7s} 1	88 Ra 7s ²	103 Lr 7s ² 5f ¹⁴ 6d ¹	104 Rf 7s ² 5f ¹⁴ 6d ²	$105 \\ Db \\ 7s^2 5f^{14} 6d^3$	106 Sg 7s ² 5f ¹⁴ 6d ⁴	107 Bh 7s ² 5f ¹⁴ 6d ⁵	108 Hs 7s ² 5f ¹⁴ 6d ⁶	109 Mt 7s ² 5f ¹⁴ 6d ⁷	$ 110 \\ Ds \\ 7s^{1}5f^{14}6d^{9} $	111 Rg 7s ¹ 5f ¹⁴ 6d ¹⁰	112 Cn 7s ² 5f ¹⁴ 6d ¹⁰	113 —	114 Fl	115 —	116 Lv	117 —	118
		57 La 6s ² 5d ¹	58 Ce $6s^24f^45d^4$	59 Pr 6s ² 4/ ³	60 Nd 6s ² 4f ⁴	61 Pm 6s ² 4/ ⁵	62 Sm 6s ² 4f ⁶	63 Eu 6s ² 4/ ⁷	$\begin{array}{c} 64 \\ \mathbf{Gd} \\ 6s^2 4f^7 5d^1 \end{array}$	65 Tb 6s ² 4/ ⁹	$66 \\ Dy \\ 6s^2 4f^{10}$	67 Ho 6s ² 4f ¹¹	68 Er 6s ² 4f ¹²	69 Tm 6s ² 4f ¹³	70 Yb $6s^24f^{14}$		
		89 Ac 7s ² 6d ¹	90 Th 7s ² 6d ²	91 Pa 7s ² 5f ² 6d ¹	92 U 7s ² 5f ³ 6d ¹	93 Np 7s ² 5f ⁴ 6d ¹	94 Pu 7s ² 5f ⁶	95 Am 7s ² 5f ⁷	96 Cm $7s^25f^76d^1$	97 Bk 7s ² 5f ⁹	98 Cf 7s ² 5f ¹⁰	99 Es 7s ² 5f ¹¹	100 Fm 7s ² 5f ¹²	101 Md 7s ² 5f ¹³	102 No 7s ² 5f ¹⁴		

inner electrons are noble gas configurations

Electron Configurations and the Periodic Table

The arrangement of the periodic table provides a method for remembering the order of orbital filling. Beginning at the top left and moving across successive rows, the order is $1s \rightarrow 2s \rightarrow 2p \rightarrow 3s \rightarrow 3p \rightarrow 4s \rightarrow 3d \rightarrow 4p$ and so on.

Electron Configurations and the Periodic Table

(6 total)

(7 total)

(8 total)

Valence Shell: Outermost shell

TABLE 5.3 Valence-Shell Electron **Configurations of Main-Group Elements** Valence-Shell Electron Configuration Group 1 A ns^1 (1 total) 2A ns^2 (2 total) 3A ns^2np^1 (3 total) 4A ns^2np^2 (4 total) 5A ns^2np^3 (5 total)

 ns^2np^4

 ns^2np^5

 ns^2np^6

6A

7A

8A

Li: 2s¹

Na: 3s¹

CI: $3s^2 3p^5$

Br:
$$4s^2 4p^5$$

valence electrons = group
number for main group
elements

HW: Electron Configurations and thePeriodic TableEnd 10/25Friday F,G

Valence Shell: Outermost shell

valence electrons = group number
for main group elements (leave out
d electrons for valence electrons)

Li: 2*s*¹

End 10/28 D

section

CI: $3s^2 3p^5$

Give electron configuration of just the valence electrons for the main group elements:

Se

Ba

Electron Configurations and Periodic Properties: Atomic Radii

Row

Electron Configurations and Periodic Properties: Atomic Radii

Electron Configurations and Periodic Properties: Atomic Radii

Which of the following pairs of atoms is LARGER?

Quiz 3 & Test 3 ends at the end of Chapter 5.(We finished Chapter 6 in my

F&G sections. Section D is about 1.5 lectures away from finishing Chapter 6. No part of Chapter 6 will be on either Quiz 3 nor Test 3)