

Lecture Presentation Chapter 5 Periodicity and the Electronic Structure of Atoms

HW: 5.1, 5.2, 5.3, 5.13, 5.15, 5.16, 5.17, 5.18, 5.26, 5.28, 5.36, 5.70, 5.72, 5.74, 5.82,
$5.90,5.94,5.96,5.106,5.108$
John E. McMurry Robert C. Fay

The Nature of Radiant Energy and the Electromagnetic Spectrum (wave property)

Violet light $\left(v=7.50 \times 10^{14} \mathrm{~s}^{-1}\right)$

higher frequency $=$ lower wavelength = higher energy

Infrared radiation
$\left(v=3.75 \times 10^{14} \mathrm{~s}^{-1}\right)$

The Nature of Radiant Energy and the Electromagnetic Spectrum
 The familiar visible region accounts for only a

 small portion near the middle of the spectrum.Wavelength (λ) in meters

Atom

Dust Pinhead

10^{-4}

Fingernails Humans
higher frequency = lower wavelength

The Nature of Radiant Energy and the Electromagnetic Spectrum

Wavelength \times Frequency $=$ Speed

λ	\times	v	$=$	c
m		$\frac{1}{\mathrm{~s}}$ or Hz	$\frac{\mathrm{m}}{\mathrm{s}}$	

c - speed of light (speed of all electromagnetic radiation), constant $c=3.00 \times 10^{8} \frac{\mathrm{~m}}{\mathrm{~s}}$

The Nature of Radiant Energy and the Electromagnetic Spectrum

The light blue glow given off by mercury streetlamps has a frequency of $6.88 \times 10^{14} \mathrm{~s}^{-1}(\mathrm{or} \mathrm{Hz})$. What is the wavelength in nanometers? $(\lambda v=c)$

$$
\begin{aligned}
\lambda=\frac{c}{v} & =\frac{\left(3.00 \times 10^{8} \frac{\mathrm{~m}}{\mathrm{~s}}\right)}{\left(6.88 \times 10^{14} \frac{1}{\mathrm{~s}}\right)} \quad \begin{array}{l}
\text { 10/18 Friday } \\
\text { G section }
\end{array} \\
& =4.36 \times 10^{-7} \mathrm{~m} \\
& =4.36 \times 10^{-7} \mathrm{~m} * \frac{1 \times 10^{9} \mathrm{~nm}}{\mathrm{~m}} \\
& =436 \mathrm{~nm}
\end{aligned}
$$

Particlelike Properties of Radiant Energy: The Photoelectric Effect and Planck's Postulate (particle property)

Photoelectric Effect: hit metal surface with light of certain energy kicks out electron from the metal. (frequency of the light used for photoelectric effect is different for each metal) (by
 analogy - picture shows ping pong balls don't break glass but baseball does)

Particlelike Properties of Radiant Energy: The Photoelectric Effect and Planck's Postulate

A plot of the number of electrons ejected from a metal surface versus light frequency shows a threshold value.

Particlelike Properties of Radiant Energy: The Photoelectric Effect and Planck's Postulate

$$
E=h v=\frac{h c}{\lambda} l_{\text {Energy of one }}^{\text {photon }} ⿵
$$

$h($ Planck's constant $)=6.626 \times 10^{-34} \mathrm{~J} \mathrm{~s}$ (above equation gives energy of one photon - somultiply energy by Avogadro's \# to get energy per mole)
higher energy $=$ higher frequency (shorter wavelength)

$$
E \uparrow \quad v \uparrow
$$

Particlelike Properties of Radiant Energy: The Photoelectric Effect and Planck's Postulate

$$
E=h v=\frac{h c}{\lambda}
$$

$h($ Planck's constant $)=6.626 \times 10^{-34} \mathrm{~J} \mathrm{~s}$ (above equation gives energy of one photon - somultiply energy by Avogadro's \# to get energy per mole)

Example: What is the energy in $\mathrm{J} / \mathrm{mole}$ for $v=3.35 \times 10^{8} \mathrm{~Hz}$ (radar waves) ? (given frequency or wavelength - can get energy)
$\mathrm{E}=\left(6.626 \times 10^{-34} \mathrm{~J} \mathrm{~s}\right)\left(3.35 \times 10^{8} / \mathrm{s}\right)=2.22 \times 10^{-25} \mathrm{~J}$ for one photon energy for one mole of photons
$=2.22 \times 10^{-25} \mathrm{~J} /$ photon $* 6.022 \times 10^{23}$ photon $/ \mathrm{mol}=0.134 \mathrm{~J} / \mathrm{mol}$

The Interaction of Radiant Energy with Atoms: Line Spectra - hit atom with energy, get line spectrum

Line Spectrum: A series of discrete lines on an otherwise dark background as a result of light emitted by an excited atom

The Quantum Mechanical Model of the Atom: Orbitals and Quantum Numbers

Wave Solve Wave function Probability of finding equation \longrightarrow or orbital (Ψ) electron in a region of space (Ψ^{2})
A wave function is characterized by three parameters called quantum numbers: n, I, and m_{l}.

Quantum numbers define where electron is located with some probability. (because of Heisenburg Uncertainty Principal - can't tell exactly the electron's position \& electron's velocity, electron is a blur)

Electron can move to lower energy level inside the atom (\& release light) OR can move to higher energy level when the electron is hit with light (\& absorb light)

The Quantum Mechanical Model of the Atom: Orbitals and Quantum Numbers

Principal Quantum Number (n)

- Describes the size and energy level of the orbital
- shell (period \#)
- Positive integer ($n=1,2,3,4, \ldots$)
- larger n
- higher energy
- larger distance of the e^{-}from the nucleus

The Quantum Mechanical Model of the Atom: Orbitals and Quantum Numbers

Angular-Momentum Quantum Number (I)
\{for $\mathrm{n}, \quad I=0$ to $(\mathrm{n}-1)$ \}

- Defines the three-dimensional shape of the orbital
- subshell (s,p,d,f regions of the periodic table)
- If $n=1$, then $I=0$.
- If $n=2$, then $I=0$ or 1 . $(\mathrm{n}-1=1)$
- If $n=3$, then $I=0,1$, or $2(n-1=2)$
- nickname letters are (subshell notation)
- $\quad l=0$ (sharp) (memorize spdf)
- $I=1 \quad p$ (principal) (do not memorize
- $I=2 \quad d$ (diffuse) $s=$ sharp, etc.)
- $\quad l=3 \quad f$ (fundamental)

The Quantum Mechanical Model of the Atom: Orbitals and Quantum Numbers

Magnetic Quantum Number (m_{l})

- Defines the spatial orientation of the orbital
- For $l, m_{l}=-l \ldots .0 \ldots .+$.
- orbitals within subshell (holds 2 electrons maximum in each orbital)
- If $I=1$, then $m_{l}=-1,0$, or 1 .
(p subshell has 3 orbitals $-p_{x}, p_{y}, p_{z}$)
- If $I=2$, then $m_{I}=-2,-1,0,1$, or 2 .
(d subshell has 5 orbitals $-d_{x y}, d_{x z}, d_{y z}, d_{z}{ }^{2}, d_{x 2-y 2}$)

The Quantum Mechanical Model of the Atom: Orbitals and Quantum Numbers

TABLE 5.2 Allowed Combinations of Quantum Numbers n, l, and m_{l} for the First Four Shells

\boldsymbol{n}	\boldsymbol{l}	$m_{\boldsymbol{l}}$	Orbital Notation	Number of Orbitals in Subshell	Number of Orbitals in Shell
1	0	0	$1 s$	1	1
2	0	0	$2 s$	1	
	1	$-1,0,+1$	$2 p$	3	4
3	0	0	$3 s$	1	
	1	$-1,0,+1$	$3 p$	3	9
	2	$-2,-1,0,+1,+2$	$3 d$	5	
4	0	0	$4 s$	1	16
	1	$-1,0,+1$	$4 p$	3	
	2	$-2,-1,0,+1,+2$	$4 d$	5	
	3	$-3,-2,-1,0,+1,+2,+3$	$4 f$	7	

The Quantum Mechanical Model of the Atom: Orbitals and Quantum Numbers

Example: Identify the possible values for each of the three quantum numbers for a $4 p$ orbital. (4 is n, p is l, so question is asking what are m_{l} values given $\mathrm{n} \& \mathrm{l}$)

The Quantum Mechanical Model of the Atom: Orbitals and Quantum Numbers

Example: Identify the possible values for each of the three quantum numbers for a $4 p$ orbital.

$$
n=4 \quad l=1(\mathrm{p})
$$

For $I=1$, what are possible m_{l} values ? (-I...0...+l)
$m_{l}=-1,0$, or 1 (3 orbitals within the p subshell within the $\mathrm{n}=4$ shell)

HW: The Quantum Mechanical Model of the Atom: Orbitals and Quantum Numbers

For $\mathrm{n}=3$ (principal quantum \#), what are all possible angular momentum quantum $\#(l$ values $)\{l=0$ to $(\mathrm{n}-1)\}$

For $l=2$, what are all possible magnetic quantum \# $\left(\mathrm{m}_{l}\right)$ values $\left\{\mathrm{m}_{l}=-l, \ldots 0 \ldots+l\right\}$

End F,G
10/21Monday

For $l=0,1,2,3$ what is the letter nickname designation (question typo F,G class NOT m ${ }_{l}$ but l)
$0=\ldots \quad 1=\ldots \quad 3=$ \qquad

The Shapes of Orbitals - s orbitals are all spherical (2s has one node, 3s has 2 nodes)

The $2 s$ orbital has buried within it a spherical surface of zero electron probability (a node).

The 3s orbital has within it two nodes of zero electron probability.

Node: A

surface of zero probability for electron

The Shapes of Orbitals

Nodes

When a rope is fixed at one end and vibrated rapidly at the other, a standing wave is generated.

The wave has two phases with different algebraic signs, + and -, separated by zero-amplitude regions, called nodes.

Node: A surface of zero probability for finding the electron

The Shapes of Orbitals - p orbital looks like dumbell

Each p orbital has two lobes of high electron probability separated by a nodal plane passing through the nucleus.

The different colors of the lobes represent different algebraic signs, analogous to the different phases of a wave.
cartesian coordinates $-\mathrm{x}, \mathrm{y}, \mathrm{z}$

Electron Spin and the Pauli Exclusion Principle

Electrons have spin - results in tiny magnetic field \& spin quantum number $\left(m_{s}\right) \cdot(+1 / 2 \&-1 / 2)$

Pauli Exclusion Principle: No two electrons in an atom can have the same four quantum numbers.

Electron Spin and the Pauli Exclusion Principle

Pauli Exclusion Principle: No two electrons in an atom can have the same four quantum numbers. (electron with 4 names - each e in atom has unique name)

Which figure violates Pauli ?

$$
\frac{\uparrow \uparrow}{\mathrm{p}_{\mathrm{x}}} \frac{\uparrow}{\mathrm{p}_{\mathrm{y}}} \frac{\uparrow}{\mathrm{p}_{\mathrm{z}}}
$$

Let's say
these are
both $2 p$

Electron Spin and the Pauli Exclusion Principle

Pauli Exclusion Principle: No two electrons in an atom can have the same four quantum numbers. (electron with 4 names - each e in atom has unique name) (note: p_{x} is not defined to always be -1)

bad - violates Pauli

These 2 electrons
both have quantum
number $\mathrm{n}=2, l=1$,
$\mathrm{m}_{l}=-1, \mathrm{~m}_{\mathrm{s}}=+1 / 2$

good
These 2 electrons have different quantum number $\mathrm{n}=2, l=1, \mathrm{~m}_{l}=-1, \mathrm{~m}_{\mathrm{s}}=+1 / 2$
$\mathrm{n}=2, l=1, \mathrm{~m}_{l}=-1, \mathrm{~m}_{\mathrm{s}}=-1 / 2$

Orbital Energy Levels in Multielectron Atoms

Effective Nuclear Charge ($Z_{\text {eff }}$): The nuclear charge actually felt by an electron (Z actual is charge of the nucleus)

$$
Z_{\text {eff }}=Z_{\text {actual }}-\text { electron shielding }
$$

Electron Configurations of Multielectron Atoms

Electron Configuration: A description of which orbitals are occupied by electrons

End D section 10/23/19

Degenerate Orbitals: Orbitals that have the same energy level-for example, the $3 p$ orbitals in a given subshell, 5 d orbitals in a given subshell

Ground-State Electron Configuration: The lowestenergy electron configuration

Aufbau Principle ("building up"): A guide for determining the filling order of orbitals

Electron Configurations of Multielectron Atoms

Rule of the aufbau principle:

1. Lower-energy orbitals fill before higher-energy orbitals.
2. An orbital can hold only two electrons, which must have opposite spins (Pauli exclusion principle).
3. If two or more degenerate orbitals are available, follow Hund's rule.

Hund's Rule: If two orbitals have the same energy (degenerate orbitals within the same subshell) - add e until all degenerate orbitals are half full and then add $2^{\text {nd }}$ electrons into orbitals (example 3 p degenerate orbitals)

Electron Configurations of Multielectron Atoms

Hund's Rule: If two orbitals have the same energy (degenerate orbitals within the same subshell) - add e until all degenerate orbitals are half full and then add $2^{\text {nd }}$ electrons into orbitals (example 3 p degenerate orbitals)

Which violates Hund?

Electron Configurations of Multielectron

 AtomsHund's Rule: If two orbitals have the same energy (degenerate orbitals within the same subshell) - add e until all degenerate orbitals are half full and then add $2^{\text {nd }}$ electrons into orbitals (example 3 p degenerate orbitals)

S good

S
bad - violates Hund

Electron Configurations of Multielectron Atoms

(this diagram does not show the individual degenerate orbitals within the subshells)
(a) Hydrogen

(b) Multielectron atoms

Electron Configurations of Multielectron Atoms

Electron Configuration

```
H: \(1 \underbrace{1} \longrightarrow 1\) electron (\# of electron) s orbital \((I=0)\) \(n=1\)
```

Get electron configuration from position of element in periodic table. $\mathrm{n}=$ period number (shell)
s (or choose s, p, d, f) is from regions of periodic table (subshell)
\# electrons - one move to right in periodic table = one more electron (what kind of electron? from position of element in periodic table)

What is outermost electron orbital?

d 101 n ¢-1									
			816						
3β	43	$9 B$	63	$? 3$				13	23
$\stackrel{21}{\mathrm{Sc}}$	${ }^{22} \mathrm{Ti}$	$\stackrel{23}{V}$	${ }^{24} \mathrm{Cr}$	$\begin{aligned} & 25 \\ & \sqrt{M n} \end{aligned}$	$\stackrel{26}{F e}$	${ }_{27}^{\mathrm{Co}}$	${ }^{28} \mathrm{Ni}$	${ }_{29}^{C}$	$\frac{30}{\mathbb{Z n}}$
44.96	47.90	50.94	52.00	54.94	55.85	58.93	58.71	63.55	65.37
${ }^{30} \mathrm{Y}$	$\stackrel{40}{\mathrm{Z} r}$	41 Nb	42 Mo	${ }^{43} \mathrm{Tc}$	44 Ru	$\stackrel{45}{R h}$	$\stackrel{46}{ }_{\mathrm{Pd}}$	47 Ag	$\stackrel{48}{\mathrm{Cd}}$
88.91	91.22	92.91	95.94	98.91	101.07	102.91	106.4	107.87	112.40
57	$\begin{aligned} & 72 \\ & \mathrm{H}^{\prime} \end{aligned}$	$\frac{73}{T} \mathbf{T}$	$\stackrel{74}{W}$	75 Re	$\stackrel{76}{O}_{8}$	${ }^{77}$	$\stackrel{78}{\mathrm{Pt}}$	$\stackrel{79}{A} \mathbf{A}$	80 Hg
138.91	178.49	180.95	183.85	186.2	190.2	192.2	195.09	196.97	200.59
$\begin{gathered} 89 \\ \text { AC } \\ (227) \end{gathered}$	$\mathrm{Uraq}_{\substack{104 \\ \text { (261) }}}$	$\underbrace{105}_{\text {Unp }}$ (262) ${ }^{\text {a }}$		$\mathrm{UnS}_{\substack{107 \\ \text { (262) }}}$	$\underbrace{\substack{108 \\ \text { 265) }}}_{\text {Un0 }}$	$\underbrace{109}_{\text {Una }}$ (266)			

p block

f block	Lanthanides	$\begin{gathered} \mathrm{J} \mathrm{\gamma} \mathrm{Ce} \\ 140.12 \end{gathered}$	$\begin{aligned} & 59 \\ & \operatorname{Pr} \\ & 140.91 \end{aligned}$	$\stackrel{60}{N d}$ 144.24	${ }^{\mathrm{P}} \mathrm{P} \mathrm{m}$ (145)	$\begin{gathered} \stackrel{62}{5}_{150.35} \end{gathered}$	$\begin{aligned} & { }^{63} \underset{\text { E.u }}{151.96} \end{aligned}$	$\begin{aligned} & 6_{\mathrm{Gd}}^{157.25} \end{aligned}$	$\begin{gathered} { }^{63} \mathrm{~Tb} \\ 158.93 \end{gathered}$	${ }^{66}$ Dy 162.50	${ }^{67} \mathrm{Ho}$ 164.93	$\begin{gathered} { }^{68} \\ 167.26 \end{gathered}$	$\begin{gathered} { }^{69} \mathrm{Tm} \\ 168.93 \\ \hline \end{gathered}$	$\begin{aligned} & 70 \\ & \text { Yb } \\ & 173.04 \end{aligned}$	
	Actinides	$\stackrel{90}{\mathrm{Th}_{3}}$	$\stackrel{9!}{\mathrm{Pa}}$ (231)	$\stackrel{92}{U}{ }_{238.03}$	$\begin{aligned} & { }^{93} \\ & \underset{(237)}{ } \end{aligned}$	$\begin{aligned} & 94 \\ & \text { Put }^{2} \\ & (244) \end{aligned}$	$\begin{aligned} & 95 \\ & \text { Am } \\ & \text { (243) } \end{aligned}$	$\begin{aligned} & 96 \\ & { }_{(247)} \end{aligned}$	${ }^{97}$ Bk (249)	$\begin{gathered} 98 \\ \mathrm{Cf} \\ (249) \end{gathered}$	$\begin{aligned} & \text { 99 } \\ & \text { Es } \\ & \text { (254) } \end{aligned}$	$\begin{aligned} & 100 \\ & F_{m i m} \\ & (257) \end{aligned}$	$\begin{aligned} & 101 \\ & \mathbf{M d} \\ & (258) \end{aligned}$	$\begin{aligned} & 102 \\ & \mathrm{~N}_{0} \\ & (259) \end{aligned}$	$\begin{gathered} 103 \\ \underset{(200)}{\mathrm{Lr}} \end{gathered}$

n-2
*Symbol (and name) provisional.
Numbers in parentheses: available radioactive isotone of loneest half-lif

Electron Configurations of Multielectron Atoms

Electron
Configuration
$1 s^{1}$

H:
$\mathrm{He}: \quad 1 s^{2} \longrightarrow 2$ electrons
$\longrightarrow n=1$

Electron Configurations of Multielectron Atoms

Electron
 Configuration

H: $\quad 1 s^{1}$
$\mathrm{He}: \quad 1 s^{2}$
Lowest energy to highest energy
Li: $1 s^{2} 2 s^{1} \longrightarrow 1$ electron

Electron Configurations of Multielectron Atoms

Electron
Configuration

H: $\quad 1 s^{1}$
$\mathrm{He}: \quad 1 s^{2}$

Li: $\quad 1 s^{2} 2 s^{1}$
$\mathrm{N}: \quad 1 s^{2} 2 s^{2} 2 p^{3} \longrightarrow 3$ electrons

Electron Configurations of Multielectron Atoms

Electron
Configuration
$1 s^{1}$
H:

Orbital-Filling
Diagram
$\frac{1}{1 s}$
$\mathrm{He}: \quad 1 s^{2}$

Li: $\quad 1 s^{2} 2 s^{1}$
$\mathrm{N}: \quad 1 s^{2} 2 s^{2} 2 p^{3}$

Electron Configurations of Multielectron Atoms

	Electron Configuration		Orbital-Filling Diagram
	$1 s^{1}$		$\frac{\uparrow}{1 s}$
$\mathrm{He}:$	$1 s^{2}$		$\frac{\uparrow \downarrow}{1 s}$
$\mathrm{Li}:$	$1 s^{2} 2 s^{1}$		
$\mathrm{~N}:$	$1 s^{2} 2 s^{2} 2 p^{3}$		

Electron Configurations of Multielectron Atoms

Electron
Configuration
H: $1 s^{1}$
$\mathrm{He}: \quad 1 s^{2}$

Li: $\quad 1 s^{2} 2 s^{1}$
$\mathrm{N}: \quad 1 s^{2} 2 s^{2} 2 p^{3}$

Orbital-Filling Diagram

$\overline{\frac{1}{1 s}}$
$\frac{\uparrow \downarrow}{1 s}$
$\frac{\uparrow \downarrow}{1 s} \frac{\uparrow}{2 s}$

Electron Configurations of Multielectron Atoms

Electron
Configuration
H:
$1 s^{1}$
$\mathrm{He}: \quad 1 s^{2}$

Li: $\quad 1 s^{2} 2 s^{1}$
$\mathrm{N}: \quad 1 s^{2} 2 s^{2} 2 p^{3}$

Orbital-Filling Diagram

$\overline{\frac{1}{1 s}}$
$\frac{1 \downarrow}{1 s}$
$\frac{\uparrow \downarrow}{1 s} \frac{\uparrow}{2 s}$
$\frac{\uparrow \downarrow}{1 s} \frac{\uparrow \downarrow}{2 s} \uparrow \frac{\uparrow}{2 p} \frac{\uparrow}{}$

HW: Electron Configurations of Multielectron Atoms

Electron Configuration

He: $\quad 1 s^{2} \longrightarrow 2$ electrons

Give the electron configuration of the element Ca, S and Ti (starting from $1 \mathrm{~s}^{2}$ electrons in the format shown above)

End 10/23 Wednesday F \& G section

HW: Electron Configurations of
 Multielectron Atoms

- Electron Configuration

He: ${ }^{2} \quad 1 s^{2} \longrightarrow 2$ electrons

Give the electron configuration of the element Ca, S and Ti (starting from $1 \mathrm{~s}^{2}$ electrons in the format shown above)
Ca $1 s^{2}, 2 s^{2}, 2 p^{6}, 3 s^{2}, 3 p^{6}, 45^{2}$
$s \quad 1 s^{2}, 2 s^{2}, 2 p^{6}, 3 s^{2}, 3 p^{4}$
$T_{i} 1 s^{2}, 2 s^{2}, 2 p^{6}, 3 s^{2}, 3 p^{6}, 4 s^{2}, 3 p^{2}$

HW: Electron Configurations of Multielectron Atoms

Electron Configuration

$\mathrm{N}: 1 s^{2} 2 s^{2} 2 p^{3}$

Orbital-Filling Diagram

$$
\frac{\uparrow \downarrow}{1 s} \frac{\uparrow \downarrow}{2 s} \oplus \frac{\uparrow}{2 p} \frac{\uparrow}{}
$$

Give the orbital filling diagram for the element Ca, S and Ti (starting from $1 \mathrm{~s}^{2}$ electrons in the format shown above)

4）化

3_{s} 化 3 华 3 化

2s，化 25 前 $\quad 25$
is $\frac{\text { 步 }}{\text { ca }}$

Electron Configurations of Multielectron Atoms

Electron
Configuration

Shorthand
Configuration

Na: $\quad 1 s^{2} 2 s^{2} 2 p^{6} 3 s^{1}$

Electron Configurations of Multielectron Atoms

Electron
Configuration
Na: $\quad 1 s^{2} 2 s^{2} 2 p^{6} 3 s^{1}$

Ne configuration

Shorthand
Configuration
$[\mathrm{Ne}] 3{ }^{1}$

Electron Configurations of Multielectron Atoms

Electron
 Configuration

Na: $\quad 1 s^{2} 2 s^{2} 2 p^{6} 3 s^{1}$

P: $\underbrace{1 s^{2} 2 s^{2} 2 p^{6}} 3 s^{2} 3 p^{3}$
Ne configuration

Shorthand
Configuration
$[\mathrm{Ne}] 3{ }^{1}$

Electron Configurations of Multielectron Atoms

Electron
Configuration
$\mathrm{Na}: \quad 1 s^{2} 2 s^{2} 2 p^{6} 3 s^{1}$

P: $\underbrace{1 s^{2} 2 s^{2} 2 p^{6}} 3 s^{2} 3 p^{3}$
Ne configuration

Shorthand
Configuration
$[\mathrm{Ne}] 3{ }^{1}$

$[\mathrm{Ne}] 3 s^{2} 3 p^{3}$

Electron Configurations of Multielectron Atoms

Electron
Configuration
Na: $\quad 1 s^{2} 2 s^{2} 2 p^{6} 3 s^{1}$

P: $\quad 1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{3}$

K: $\underbrace{1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6}} 4 s^{1}$ Ar configuration

Shorthand
Configuration
$[\mathrm{Ne}] 3{ }^{1}$
$[\mathrm{Ne}] 3 s^{2} 3 p^{3}$

Electron Configurations of Multielectron Atoms

Electron
Configuration
Na: $\quad 1 s^{2} 2 s^{2} 2 p^{6} 3 s^{1}$
$\mathrm{P}: \quad 1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{3}$

K: $\underbrace{1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6}} 4 s^{1}$
Ar configuration

Shorthand
Configuration
$[\mathrm{Ne}] 3{ }^{1}$
$[\mathrm{Ne}] 3 s^{2} 3 p^{3}$
[Ar] $4 s^{1}$

Electron Configurations of Multielectron Atoms

Electron
 Configuration
 Na: $\quad 1 s^{2} 2 s^{2} 2 p^{6} 3 s^{1}$

$\mathrm{P}: \quad 1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{3}$

K: $\quad 1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{1}$

Sc:

Shorthand
Configuration
$[\mathrm{Ne}] 3{ }^{1}$
$[\mathrm{Ne}] 3 s^{2} 3 p^{3}$
[Ar] $4 s^{1}$
[Ar] $4 s^{2} 3 d^{\prime \prime}$

Ar configuration

Anomalous Electron Configurations (for transition metals near d d^{5} or d^{10})

Expected
 Configuration

Cr: $\quad[\mathrm{Ar}] 4 s^{2} 3 d^{4}$
$[\mathrm{Ar}] 4 s^{1} 3 d^{6}$
End 10/24 R
D section
[Ar] $4 s^{1} 3 d^{10}$

Anomalous Electron Configurations
(transition metals near d^{5} or d^{10}) (full or half filled d is stable)

Expected Configuration

$\mathrm{Cr}: \quad[\mathrm{Ar}] 4 s^{2} 3 d^{4}$
$\frac{\uparrow \downarrow}{4 \mathrm{~s}}$
$\frac{\uparrow}{3 \mathrm{~d}} \frac{\uparrow}{3 \mathrm{~d}} \frac{\uparrow}{3 \mathrm{~d}} \frac{\uparrow}{3 \mathrm{~d}} \frac{}{3 \mathrm{~d}}$
$\mathrm{Cu}: \quad[\mathrm{Ar}] 4 s^{2} 3 d^{9}$
$\frac{\uparrow \downarrow}{4 \mathrm{~s}}$
$\frac{\uparrow \downarrow}{3 \mathrm{~d}} \frac{\uparrow \downarrow}{3 \mathrm{~d}} \frac{\uparrow \downarrow}{3 \mathrm{~d}} \frac{\uparrow \downarrow}{3 \mathrm{~d}} \frac{\uparrow}{3 \mathrm{~d}}$

Actual
Configuration
[Ar] $4 s^{1} 3 d^{5}$

[Ar] $4 s^{1} 3 d^{10}$

$\frac{\uparrow \downarrow}{3 \mathrm{~d}} \frac{\uparrow \downarrow}{3 \mathrm{~d}} \frac{\uparrow \downarrow}{3 \mathrm{~d}} \frac{\uparrow \downarrow}{3 \mathrm{~d}} \frac{\uparrow \downarrow}{3 \mathrm{~d}}$

Electron configuration for all elements for last set of

$\begin{gathered} 57 \\ \text { La } \\ 65^{2} 5 d^{1} \end{gathered}$	$\begin{gathered} 58 \\ \mathrm{Ce} \\ 6 s^{2} 4 \int^{2} 5 d^{1} \end{gathered}$	$\begin{gathered} 59 \\ \mathrm{Pr} \\ 6 s^{2} 4 f^{3} \end{gathered}$	$\begin{gathered} 60 \\ \mathrm{Nd} \\ 6 s^{2} 4 f^{\prime} \end{gathered}$	$\begin{gathered} 61 \\ \mathrm{Pm} \\ 6 s^{2} 4 f^{5} \end{gathered}$	$\begin{gathered} 62 \\ \mathrm{Sm} \\ 6 s^{2} 4 f^{6} \end{gathered}$	$\begin{gathered} 63 \\ \mathrm{Eu} \\ 65^{2} 4 f^{7} \end{gathered}$	$\begin{gathered} 64 \\ G d \\ 6 s^{2} 4 f^{7} 5 d^{1} \end{gathered}$	$\begin{gathered} 65 \\ \mathrm{~Tb} \\ 6 s^{2} 4 f^{9} \end{gathered}$	$\begin{gathered} 66 \\ \mathrm{Dy} \\ 6 s^{2}+4 f^{10} \end{gathered}$	$\begin{gathered} 67 \\ \text { Ho } \\ 6 s^{2} 4 f^{\prime \prime} \end{gathered}$	$\begin{gathered} 68 \\ \mathrm{Er} \\ 6 s^{2} 4 f^{12} \end{gathered}$	$\begin{gathered} 69 \\ \mathrm{Tm} \\ 6 s^{2} 4 f^{13} \end{gathered}$	$\begin{gathered} 70 \\ \mathrm{Yb} \\ 6 s^{2} 4 f^{14} \end{gathered}$
$\begin{gathered} 89 \\ \mathrm{Ac} \\ 7 s^{2} 6 d^{1} \end{gathered}$	$\begin{aligned} & 90 \\ & \text { Th } \\ & 7 s^{2} 6 d^{2} \end{aligned}$	$\begin{gathered} 91 \\ \mathrm{~Pa} \\ 7 s^{2} 5 f^{2} 6 d^{1} \end{gathered}$	$\begin{gathered} 92 \\ \mathrm{U} \\ 7 s^{2} 5 f^{3} 6 d^{1} \end{gathered}$	$\begin{gathered} 93 \\ \mathrm{~Np} \\ 7 s^{2} 5 f^{1} 6 d^{1} \end{gathered}$	$\begin{gathered} 94 \\ \mathrm{Pu} \\ 7 s^{2} 5 f^{6} \end{gathered}$	$\begin{gathered} 95 \\ \text { Am } \\ 75^{2} 5 f^{7} \end{gathered}$	$\begin{gathered} 96 \\ \mathrm{Cm} \\ 7 s^{2} 5 f^{7} 6 d^{1} \end{gathered}$	$\begin{gathered} 97 \\ \text { Bk } \\ 7 s^{2} 5 f^{9} \end{gathered}$	$\begin{gathered} 98 \\ \text { Cf } \\ 7 s^{2} 5 f^{10} \end{gathered}$	$\begin{gathered} 99 \\ \text { Es } \\ 75^{2} 5 f^{11} \end{gathered}$	$\begin{gathered} 100 \\ \text { Fm } \\ 7 s^{2} 5 f^{12} \end{gathered}$	$\begin{gathered} 101 \\ \mathrm{Md} \\ 75^{2} 5 f^{13} \end{gathered}$	$\begin{gathered} 102 \\ \text { No } \\ 7 s^{2} 5 f^{14} \end{gathered}$

inner electrons are noble gas configurations

Electron Configurations and the Periodic Table

The arrangement of the periodic table provides a method for remembering the order of orbital filling. Beginning at the top left and moving across successive rows, the order is $1 s \rightarrow 2 s$ $\rightarrow 2 p \rightarrow 3 s \rightarrow 3 p \rightarrow 4 s \rightarrow 3 d \rightarrow 4 p$ and so on.

Electron Configurations and the Periodic Table

Valence Shell: Outermost shell

TABLE 5.3 Valence-Shell Electron Configurations of Main-Group Elements		
Group	Valence Configu	Electron
1A	$n s^{1}$	(1 total)
2A	$n s^{2}$	(2 total)
3A	$n s^{2} n p^{1}$	(3 total)
4A	$n s^{2} n p^{2}$	(4 total)
5A	$n s^{2} n p^{3}$	(5 total)
6A	$n s^{2} n p^{4}$	(6 total)
7A	$n s^{2} n p^{5}$	(7 total)
8A	$n s^{2} n p^{6}$	(8 total)

Li: $2 s^{1}$
$\mathrm{Na}: 3 s^{1}$

CI: $3 s^{2} 3 p^{5}$
$\mathrm{Br}: 4 s^{2} 4 p^{5}$
\# valence electrons = group number for main group elements

HW: Electron Configurations and the Periodic Table
 > Valence Shell: Outermost shell

 Valence Shell: Outermost shell

 Valence Shell: Outermost shell}\# valence electrons = group number for main group elements (leave out d electrons for valence electrons)

Li: $2 s^{1}$
CI: $3 s^{2} 3 p^{5}$

Give electron configuration of just the valence electrons for the main group elements:

Se

Ba

Electron Configurations and Periodic Properties: Atomic Radii

Radius increases \downarrow

Radius increases
$\overrightarrow{\text { Row }}$
Radius

Electron Configurations and Periodic Properties: Atomic Radiil

Electron Configurations and Periodic Properties: Atomic Radii

Which of the following pairs of atoms is LARGER ?

$\underset{\text { across period }}{\text { Smaller } \longrightarrow}$ | Larger \downarrow |
| :--- |
| down group |

in periodic tableN vs FN vs AsNa vs ArF vs I

Quiz 3 \& Test 3

ends at the end of

Chapter $5_{\text {wer insuse chineefer } n \text { ny }}$
F\&G sections. Section D is about 1.5 lectures away from finishing Chapter 6. No part of Chapter 6 will be on either Quiz 3 nor Test 3)

