

Lecture Presentation

Chapter 6 Ionic Compounds: Periodic Trends & Bonding Theory

HW: 6.1, 6.2, 6.3, 6.5, 6.6, 6.7, 6.9, 6.10, 6.11, 6.12, 6.13, 6.16, 6.20, 6.22, 6.24, 6.26, 6.38, 6.40, 6.46, 6.52, 6.62, 6.68

> John E. McMurry Robert C. Fay

Electron Configurations of lons (for main group elements) stable ion = closest noble gas electron configuration (to octet)

metal – lose electrons (group 1A to group 3A)
(+1 lose one electron to +3 lose 3 electrons)

non metal – gain electrons (group 5A to group 7A)
(-3 gain 3 electrons to -1 gain 1 electron)

+ charge = remove electron until get electron configuration of closest prior noble gas

charge = add electron until get electron
 configuration of closest next noble gas

Group 1a atom: [Noble gas] *ns*¹ −1 e⁻ →

Group 1a ion+: [Noble gas]

Group 2a atom: [Noble gas] $ns^2 -2e^- \rightarrow$

Group 2a ion²⁺: [Noble gas]

Group 6a atom: [Noble gas] $ns^2 np^4 + 2 e^- \rightarrow$

Group 6a ion²⁻: [Noble gas] *ns*² *np*⁶

Group 7a atom: [Noble gas] $ns^2 np^5 + 1 e^- \rightarrow$

Group 7a ion⁻: [Noble gas] *ns*² *np*⁶

TABLE 6.1	Some Common Main-Group lons and Their Noble-Gas Electron
Configuratio	ns

Group 1A	Group 2A	Group 3A	Group 6A	Group 7A	Electron Configuration
H^{+}					[None]
H^{-}					[He]
Li^+	Be ²⁺				[He]
Na ⁺	Mg^{2+}	Al^{3+}	O ²⁻	F^{-}	[Ne]
K^+	Ca^{2+}	*Ga ³⁺	S^{2-}	Cl^{-}	[Ar]
Rb^+	Sr^{2+}	*In ³⁺	Se ^{2–}	Br ⁻	[Kr]
Cs^+	Ba ²⁺	*Tl ³⁺	Te^{2-}	I_	[Xe]

*These ions don't have a true noble-gas electron configuration because they have an additional filled *d* subshell.

HW: Electron Configurations of lons (for main group elements)

metal - lose electrons to nearest noble gas (+ charge)
non metal - gain electrons to nearest noble gas (- charge)

What is the electron configuration of F?

What is the electron configuration of F⁻¹?

What is the electron configuration of Mg?

What is the electron configuration of Mg⁺²?

End 10/30 D section

Electron Configurations of Ions (transition metals)

stable ion = lose electrons to half filled d or lose only s electrons (for early TM), usually lose s electron before d electron

Many transition metals have multiple charges possible

End 10/31 Thursday D section

HW: Electron Configurations of lons (for transition metal elements)

Usually lose s electrons first. Lose d electrons to half full or empty d subshell,

What is the electron configuration of Mn?

What is the electron configuration of Mn^{+2} ?

What is the electron configuration of Zn?

What is the electron configuration of Zn^{+2} ?

Ionic Radii

Cations are smaller than the corresponding **neutral atoms**, both because the principal quantum number of the valence-shell electrons is smaller for the cations than it is for the neutral atoms and because Z_{eff} is larger.

<u>cations are smaller than neutral atoms (keep</u> <u>same nucleus but fewer electrons)</u>

because fewer electrons to lower n (principal quantum number) & larger Z_{eff}

End 10/28 Monday F section

Ionic Radii

Anions – keep same nucleus but larger number of electrons

HW: Ionic Radii

<u>Cations (+ charged)</u> are <u>smaller</u> than <u>neutral atoms</u> <u>Anions (- charged)</u> are <u>larger</u> than neutral atoms

Which is larger ?

Ca vs Ca⁺²

S vs S⁻²

Fe vs Fe⁺² vs Fe⁺³

HW: Ionic Radii

<u>Cations (+ charged)</u> are <u>smaller</u> than <u>neutral atoms</u> <u>Anions (- charged)</u> are <u>larger</u> than neutral atoms

Which is larger ?

- Ca vs Ca⁺² Ca
- S vs S⁻² S⁻²

Fe vs Fe^{+2} vs Fe^{+3} Fe > Fe^{+2} > Fe^{+3}

Ionization Energy

element \rightarrow element⁺ + electron

Ionization Energy (E_i): The amount of energy necessary to remove the highest-energy electron from an isolated neutral atom in the gaseous state

Ionization Energy – Iargest (*E*_i) is noble gases

Atomic number

Ionization Energy

bc of stability of ¹/₂ p subshell

The group 2A elements (Be, Mg, Ca) have slightly larger E_i values than might be expected.

The group 6A elements

(O, S) have slightly smaller E_i values than might be expected.

Atomic number

Boron has a lower E_i due to a smaller Z_{eff} (shielding by the 2s electrons or remove only e in p subshell).

Higher Ionization Energies (zig zag line - big jump in ionization energy if have to remove core electrons - to lower shell)

End 10/28 M G section

 $M + energy \longrightarrow M^+ + e^ M^+ + energy \longrightarrow M^{2+} + e^ M^{2+}$ + energy \longrightarrow M^{3+} + e⁻ Third ionization Ei3

First ionization Eil second ionization Ei2

TABLE 6.2 Higher Ionization Energies (kJ/mol) for Main-Group Third-Row Elements								
Group	1A	2A	3A	4A	5A	6A	7 A	8A
E _i Number	Na	Mg	Al	Si	Р	S	Cl	Ar
E_{i1}	496	738	578	787	1,012	1,000	1,251	1,520
E _{i2}	4,562	1,451	1,817	1,577	1,903	2,251	2,297	2,665
E_{i3}	6,912	7,733	2,745	3,231	2,912	3,361	3,822	3,931
E_{i4}	9,543	10,540	11,575	4,356	4,956	4,564	5,158	5,770
E _{i5}	13,353	13,630	14,830	16,091	6,273	7,013	6,540	7,238
E_{i6}	16,610	17,995	18,376	19,784	22,233	8,495	9,458	8,781
E _{i7}	20,114	21,703	23,293	23,783	25,397	27,106	11,020	11,995

The zigzag line marks the large jumps in ionization energies.

HW: Higher Ionization Energies (zig zag line - big jump in ionization energy if have to remove core electrons – to lower shell)

 $M + energy \longrightarrow M^+ + e^-$ First ionization Ei1 $M^+ + energy \longrightarrow M^{2+} + e^-$ second ionization Ei2 $M^{2+} + energy \longrightarrow M^{3+} + e^-$ Third ionization Ei3

For the following element show the step for first ionization energy, second ionization energy and third ionization energy in equation & electron configuration orbital diagram

Reaction

e configuration orbital diagram

Mg

 Mg^{+1}

element + electron \rightarrow element

Electron Affinity (E_{ea}): The energy change that occurs when an electron is added to an isolated atom in the gaseous state (usually negative energy, energy released)

A negative value for E_{ea} , such as those for the group 7A elements (halogens), means that energy is released when an electron adds to an atom.

A value of zero, such as those for the group 2A elements (alkaline earths) and group 8A elements (noble gases), means that energy is absorbed but the exact amount can't be measured.

Octet Rule

Octet rule: Main-group elements tend to undergo reactions that leave them with eight outer-shell electrons. That is, main-group elements react so that they attain a noble-gas electron configuration with filled *s* and *p* sublevels in their valence electron shell. (extra stability if get 8 electron outer shell)

Octet Rule – stable with 8 electrons outer shell

10/30/19 end G section

Metals tend to have low E_i (have to add little energy to lose e) and low E_{ea} .(get out little energy when gain e) They tend to lose one or more electrons.

Nonmetals tend to have high E_i (have to add lot of energy to lose e) and high E_{ea} . (get out lots energy when gain e) They tend to gain one or more electrons.

Ionic Bonds and the Formation of Ionic Solids

Ionic Bonds and the Formation of Ionic Solids (steps to form/break up ionic compound)

Born-Haber Cycle

Ionic Bonds and the Formation of Ionic Solids Born-Haber Cycle

Step 1:	Na(s) \longrightarrow Na(g) sublimination – solid to gas	+107.3 kJ/mol
Step 2:	$\frac{1}{2} \operatorname{Cl}_2(g) \longrightarrow \operatorname{Cl}(g)$ bond dissociation	+122 kJ/mol
Step 3:	$Na(g) \longrightarrow Na^+(g) + e^-$ ionization energy	+495.8 kJ/mol
Step 4:	$Cl(g) + e^{-} \longrightarrow Cl^{-}(g)$ electron affinity	–348.6 kJ/mol
Step 5:	$Na^+(g) + Cl^-(g) \longrightarrow NaCl(s)$ reverse of lattice energy	–787 kJ/mol
-	$Na(s) + Cl_2(g) \longrightarrow NaCl(s)$	411 kJ/mol

Lattice Energy (U): The amount of energy that must be supplied to break up an ionic solid into individual gaseous ions + (to form ionic solid – sign)

TABLE 6.3	Lattice Energies of Some Ionic Solids (kJ/mol)
-----------	--

	Anion				
Cation	F ⁻	Cl ⁻	Br ⁻	I_	O ²⁻
Li ⁺	1036	853	807	757	2925
Na ⁺	923	787	747	704	2695
K^+	821	715	682	649	2360
Be ²⁺	3505	3020	2914	2800	4443
Mg^{2+} Ca^{2+}	2957	2524	2440	2327	3791
Ca ²⁺	2630	2258	2176	2074	3401

Lattice Energy (U): The amount of energy that must be supplied to break up an ionic solid into individual gaseous ions + (to form ionic solid – sign)

$$U = k * \frac{z_1 z_2}{d}$$

[k = constant, z_1z_2 are charges, d=distance between ions – related to atomic radius]

U larger for smaller atomic radius U larger for larger charges on ions

Lattice Energy (U): The amount of energy that must be supplied to break up an ionic solid into individual gaseous ions + sign (to form ionic solid – sign)

U larger for smaller atomic radius ex: U(LiF) > U(NaF) > U(KF) (Li small size < Na < K big size)

U larger for larger ion charge ex: $U(AI I_3) > U(Mg I_2) > U(Na I)$ charges (AI +3 > Mg +2 > Na +1)

Lattice Energy (U): break up an ionic solid into individual gaseous ions + sign (to form ionic solid – sign)

U larger for smaller atomic radius U larger for larger ion charge

Which has larger U? AICl₃

AICl3vsMg Cl_2 ?+3+2AI smallerMg bigger

end 11/1 F, G section