

Lecture Presentation Chapter 9

Thermochemistry:

 Chemical Energy$$
\begin{aligned}
& 9.1, ~ 9.2, ~ 9.3, ~ 9.4, ~ 9.5, ~ 9.6, \\
& 9.7,9.9, ~ 9.10, ~ 9.11, ~ 9.12, \\
& 9.13, ~ 9.14, ~ 9.16, ~ 9.18, ~ 9.19, \\
& 9.20, ~ 9.21, ~ 9.23, ~ 9.24, ~ 9.26, \\
& 9.29, ~ 9.30, ~ 9.34, ~ 9.42, ~ 9.46, \\
& 9.62, ~ 9.66, ~ 9.68, ~ 9.76, ~ 9.80, ~ \\
& 9.86, ~ 9.90, ~ 9.94, ~ 9.102, \\
& 9.106, ~ 9.122
\end{aligned}
$$

John E. McMurry Robert C. Fay

Energy and Its Conservation

Conservation of Energy Law: Energy cannot be created or destroyed; it can only be converted from one form to another. (another way to state - First Law of Thermodynamics)

First Law of Thermodynamics: The total internal energy (E) of an isolated system is constant. (energy of the universe is constant)

Energy and Its Conservation

potential energy \rightarrow kinetic energy \rightarrow electricity

Energy and Its Conservation

Thermal Energy: The kinetic energy of molecular motion. It is measured by finding the temperature of an object.

Heat: The amount of thermal energy transferred from one object to another as the result of a temperature difference between the two

Internal Energy and State Functions

 First Law of Thermodynamics: The total internal energy E of an isolated system is constant. (but in reality system is NOT isolated so measure change in internal energy of the system) (energy of the universe is constant)$$
\Delta E=E_{\text {final }}-E_{\text {initial }} \mid \text { system }
$$

The energy change is the difference between final and initial states.
$\Delta E=E_{\text {final }}-E_{\text {initial }}$

Energy as a State Function

- State function (state property): Property that does not depend in any way on the system's past or future (independent of the pathway taken between the two states)

Parts of the Universe

- System: Part of the universe on which one wishes to focus attention
- Example - System can be defined as the reactants and products of a reaction
- Surroundings: Includes everything else in the universe
- Example - Surroundings consist of anything else other than the reactants and products

Types of Reactions

- Exothermic: Reaction that releases heat to surrounding [reaction (system) releases heat]
- Heat flows out of the system (hold reaction beaker, hand feels hot) ($\Delta \mathrm{E}=$ negative)
- Example - Combustion of methane
- Endothermic: Reaction that absorbs heat from the surroundings (add heat to reaction)
-- Heat flows into system (hold reaction beaker, hand feels cold) ($\Delta \mathrm{E}=$ positive)
- Example - Formation of nitric oxide

Internal Energy and State Functions (view everything from the point of view of system)
$\mathrm{CH}_{4}(g)+2 \mathrm{O}_{2}(g) \longrightarrow \mathrm{CO}_{2}(g)+2 \mathrm{H}_{2} \mathrm{O}(g)+802 \mathrm{~kJ}$ energy

$$
\Delta E=E_{\text {final }}-E_{\text {initial }}=-802 \mathrm{~kJ}(\text { system })
$$

802 kJ is released when 1 mol of methane, CH_{4}, reacts with 2 mol of oxygen to produce 1 mol of carbon dioxide and 2 mol of water. (system is reaction)

Product has 802 kJ less energy than reactant.
System has lost energy to surroundings.
Exothermic reaction

Energy Diagram for the Combustion of Methane, an Exothermic Process

Energy and Enthalpy - system

 exchanges energy with surrounding by either exchanging heat or doing work$$
\Delta E=q+w=\text { heat }+ \text { work }
$$

$$
\begin{aligned}
& q=\text { heat transferred } \\
& + \text { system gains heat }
\end{aligned}
$$

$$
w=\text { work }=-P \Delta V
$$

$$
q=\Delta E+P \Delta V
$$

Constant Volume ($\Delta V=0$): $\quad q_{v}=\Delta E$

$$
\text { Constant Pressure: } \begin{aligned}
& q_{p}=\Delta E+P \Delta V \\
& q_{\mathrm{p}}=(\Delta H)=\text { enthalpy }
\end{aligned}
$$

Internal Energy and Enthalpy

Enthalpy change
Or
Heat of reaction (at constant pressure)
Enthalpy is a state function whose value depends only

$$
\begin{aligned}
\Delta H & =H_{\text {final }}-H_{\text {initial }} \\
& =H_{\text {products }}-H_{\text {reactants }}
\end{aligned}
$$ on the current state of the system, not on the path taken to arrive at that state.

$\mathrm{P} \Delta \mathrm{V}$ is usually small so $\quad \Delta \mathrm{E}=\Delta \mathrm{H}$ is a good approximation Although as in the example on page 320 in text, get most of work from a car combustion from $\mathrm{P} \Delta \mathrm{V}$ work

Thermochemical Equations and the Thermodynamic Standard State

Thermodynamic Standard State: Most stable form of a substance at 1 atm pressure and at a specified temperature, usually $25^{\circ} \mathrm{C} ; 1 \mathrm{M}$ concentration for all substances in solution ($\Delta H^{\circ}>$ standard state represented by superscript)
$\mathrm{C}_{3} \mathrm{H}_{8}(g)+5 \mathrm{O}_{2}(g) \longrightarrow 3 \mathrm{CO}_{2}(g)+4 \mathrm{H}_{2} \mathrm{O}(g) \quad \Delta H^{\circ}=-2044 \mathrm{~kJ}$
$3 \mathrm{CO}_{2}(g)+4 \mathrm{H}_{2} \mathrm{O}(g) \longrightarrow \mathrm{C}_{3} \mathrm{H}_{8}(g)+5 \mathrm{O}_{2}(g) \quad \Delta H^{\circ}=+2044 \mathrm{~kJ}$
Reverse direction of reaction reverse sign of enthalpy (whatever you do to the reaction you also do to the enthalpy)

HW 9.1: Calculating amount of heat released in a reaction:

$$
2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \quad \Delta \mathrm{H}^{\circ}=-571.6 \mathrm{~kJ}
$$

How much heat is released for:
a) $\quad 10.00 \mathrm{~g}$ of hydrogen gas with excess oxygen $\left(\mathrm{FM} \mathrm{H}_{2}=2.02\right.$ $\mathrm{g} / \mathrm{mol}$)
$10.00 \mathrm{~g} \mathrm{H}_{2} * \frac{1 \mathrm{~mol} / \mathrm{H}_{2}}{2.02 \mathrm{~g} / \mathrm{H}_{2}} * \frac{-571.6 \mathrm{~kJ}}{2 \mathrm{~mol} / \mathrm{H}_{2}}=\frac{-1414.85 \text { or }-1415 \mathrm{~kJ}}{\text { (heat released) }}$
b) 5.500 mol of liquid water converted to hydrogen and oxygen gas (reversed RXN - change sign of reaction)

HW 9.1: Calculating amount of heat released in a reaction:

$$
2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \quad \Delta \mathrm{H}^{\circ}=-571.6 \mathrm{~kJ}
$$

How much heat is released for:
a) $\quad 10.00 \mathrm{~g}$ of hydrogen gas with excess oxygen $\left(\mathrm{FM} \mathrm{H}_{2}=2.02\right.$ $\mathrm{g} / \mathrm{mol}$)
$10.00 \mathrm{~g} \mathrm{H}_{2} * \frac{1 \mathrm{n} 101 \mathrm{H}_{2}}{2.02{\mathrm{~g} / \mathrm{H}_{2}}^{2}} * \frac{-571.6 \mathrm{~kJ}}{2 \mathrm{mbl} \mathrm{H}}=\underset{\text { (heat released) }}{-1414.85 \text { or }-1415 \mathrm{~kJ}}$
b) 5.500 mol of liquid water is converted to hydrogen and oxygen gas (change sign - whatever do to reaction you do to enthalpy)
$5.500 \mathrm{~mol} /$ water (1) $* \frac{571.6 \mathrm{~kJ}}{2 \text { mol water(l) }}=\quad \begin{aligned} & 1571.9 \mathrm{~kJ}=1572 \mathrm{~kJ} \\ & \text { (heat absorbed) }\end{aligned}$

Enthalpies of Physical and Chemical

 ChangeEnthalpy of Fusion ($\Delta H_{\text {fusion }}$): The amount of heat necessary to melt a substance without changing its temperature

Enthalpy of Vaporization ($\Delta H_{\text {vap }}$): The amount of heat required to vaporize a substance without changing its temperature

Enthalpy of Sublimation $\left(\Delta H_{\text {subl }}\right)$: The amount of heat required to convert a substance from a solid to a gas without going through a liquid phase

Enthalpies of Physical and Chemical Change

Enthalpies of Physical and Chemical Change

$$
2 \mathrm{Al}(s)+\mathrm{Fe}_{2} \mathrm{O}_{3}(s) \longrightarrow 2 \mathrm{Fe}(s)+\mathrm{Al}_{2} \mathrm{O}_{3}(s)
$$

$\Delta H^{\circ}=-852 \mathrm{~kJ}$
Exothermic
reverse reaction - change sign of enthalpy

$$
2 \mathrm{Fe}(s)+\mathrm{Al}_{2} \mathrm{O}_{3}(s) \longrightarrow 2 \mathrm{Al}(s)+\mathrm{Fe}_{2} \mathrm{O}_{3}(s)
$$

Endothermic

HW 9.2: Endothermic vs. Exothermic

Endothermic - system gains heat from surrounding, heat flows into system ($+\Delta \mathrm{H}$)
Exothermic - system loses heat to surrounding, heat flows out of system ($-\Delta \mathrm{H}$)

Which of the following is Endothermic or Exothermic ?
boiling water - surrounding adds heat to boiling water (system) as it forms gas, $+\Delta \mathrm{H}$ endo
ice melting in ice coffee -
burning gasoline in a car engine -

HW 9.2: Endothermic vs. Exothermic

Endothermic - system gains heat from surrounding, heat flows into system ($+\Delta \mathrm{H}$)
Exothermic - system loses heat to surrounding, heat flows out of system ($-\Delta \mathrm{H}$)

Which of the following is Endothermic or Exothermic ?
boiling water - surrounding adds heat to boiling water (system) as it forms, $+\Delta \mathrm{H}$ endo
ice melting in ice tea - heat flows into ice (system), $+\Delta \mathrm{H}$ endo
burning gasoline (hydrocarbon like hexane or octane) in a car engine - reaction (system) produces heat - heat flows out of system, $-\Delta \mathrm{H}$, exothermic

HW 9.3: Enthalpy Calculation \& Endo vs Exo Reaction

Given the following, if 10.0 grams of $\mathrm{LiF}(\mathrm{s})$ is dissolved in water, (a) would the temperature of the water (surroundings) rise to a higher number or lower down to a lower number? (b) What would be the enthalpy change for the given amount of $\mathrm{LiF}(\mathrm{s})$? (Formula Mass of LiF $=6.94+19.00=25.94 \mathrm{~g} / \mathrm{mol}$)
$\mathrm{LiF}(\mathrm{s}) \rightarrow \mathrm{Li}^{+}(\mathrm{aq})+\mathrm{F}^{-}(\mathrm{aq}) \quad \Delta \mathrm{H}^{0}=+5.5 \mathrm{~kJ}$

HW 9.3: Enthalpy Calculation \& Endo vs Exo Reaction

Given the following, if 10.0 grams of $\mathrm{LiF}(\mathrm{s})$ is dissolved in water, (a) would the temperature of the water rise to a higher number or lower down to a lower number? Water is surrounding. $\Delta \mathrm{H}^{0}$ is positive - endo. Surroundings (water) lower T
(b) What would be the enthalpy change for the given amount of $\operatorname{LiF}(\mathrm{s}) ?(\mathrm{FM}$ of LiF $=6.94+19.00=25.94 \mathrm{~g} / \mathrm{mol})$
$\mathrm{LiF}(\mathrm{s}) \rightarrow \quad \mathrm{Li}^{+}(\mathrm{aq})+\mathrm{F}^{-}(\mathrm{aq}) \quad \Delta \mathrm{H}^{0}=+5.5 \mathrm{~kJ}$

Expansion Work - PV work (work = P $\Delta \mathrm{V}$)

Exmple: expansion work

Calculate the amount of work ($\mathrm{kJ} \mathrm{)} \mathrm{done} \mathrm{during} \mathrm{a} \mathrm{synthes} \mathrm{of}$ ammonia in which the volume contracts from 8.6 Liters (initial) to 4.3 Liters (final) ata constant external pressure of 44 atm .

$$
\mathrm{w}=-\mathrm{P} \Delta \mathrm{~V}=-(44 \mathrm{~atm})(4.3 \text { Liters }-8.6 \text { Liters }) \text { wrong units }
$$

$$
\mathrm{J}=\left(\mathrm{kg} \mathrm{~m}^{2}\right) / \mathrm{s}^{2} \quad 1 \mathrm{~atm}=101,525 \mathrm{~Pa} \quad 1 \mathrm{R}=1 \mathrm{~kg} / \mathrm{m}^{*} \mathrm{~s}^{2} \quad 1 \mathrm{~L}=10^{-3} \mathrm{~m}^{3}
$$

$$
\left.\mathrm{w}=\left\{-44 \operatorname{atgm} * \frac{101325 \mathrm{~Pa}^{*}}{22^{*}} \frac{1 \mathrm{~kg} / \mathrm{m}^{*} \mathrm{~s}^{2}}{\mathrm{~Pa}}\right] \cdot(-4.3) * \frac{10-\mathrm{m}}{}{ }^{2}\right)
$$

$$
w=19170.69\left(\mathrm{~kg} \mathrm{~m}^{2}\right) / \mathrm{s}^{2}=19170.69 \mathrm{~J} \quad \text { Never Mind this Stide }
$$

$$
\mathrm{w}=19170.69 \frac{\mathrm{~J} * 1 \mathrm{~kJ}}{1000 \mathrm{~L}}=19.2 \mathrm{~kJ}=19 \mathrm{~kJ}
$$

conversions on periodic table that you get at all exams

Example: expansion work

Calculate the amount of work (kJ) done during a synthesis of ammonia in which the volume contracts from 8.6 Liters (initial) to 4.3 Liters (final) at a constant external pressure of 44 atm .
$\mathrm{w}=-\mathrm{P} \Delta \mathrm{V}=-(44 \mathrm{~atm})^{*}$ (4.3 Liters - 8.6 Liters) wrong units
1 liter atm $=101.33$ Joule \longleftarrow memorize this
(use this slide instead)
$\mathrm{w}=-(44 \mathrm{~atm})^{*}(-4.3$ liters $)=189.2$ liter atm
$\mathrm{w}=189.2$ liter atm * $\frac{101.33 \text { Joule }}{1 \text { liter atm }}=19171.636$ Joule
$w=19171.636$ Joule $x \frac{1 \mathrm{~kJ}}{1000 \mathrm{~J}}=19 \mathrm{~kJ}$

Calorimetry and Heat Capacity

Measure the heat flow at constant pressure (ΔH).

Calorimetry and Heat Capacity

Measure the heat flow at constant volume (ΔE).

Calorimetry and Heat Capacity (look up heat capacity on chart) (constant P)

Heat Capacity (C): The amount of heat necessary to raise the temperature of an object or substance a given amount

$$
C=\frac{q}{\Delta T} \quad q=C \times \Delta T
$$

Specific Heat (Capacity): The amount of heat required to raise the temperature of 1 g of a substance by $1^{\circ} \mathrm{C}$

$$
q=(\text { Specific heat }) \times(\text { Mass of substance }) \times \Delta T
$$

Calorimetry and Heat Capacity

Molar Heat Capacity (C_{m}): The amount of heat necessary to raise the temperature of 1 mol of a substance by $1^{\circ} \mathrm{C}$

$$
q=C_{\mathrm{m}} \times \text { Moles of substance } \times \Delta T
$$

Calorimetry and Heat Capacity

$$
q=\mathrm{c} m \Delta T \quad c=\text { specific heat capacity }\left(\mathrm{J} / \mathrm{g}^{\circ} \mathrm{C}\right)
$$

$q=C_{m}$ mole $\Delta T \quad C_{m}=$ molar heat capacity $\mathrm{J} / \mathrm{mol}{ }^{\circ} \mathrm{C}$

Watch units, put equations on to 3 " x 5",
get chart with c or C_{m} values

Calorimetry and Heat Capacity

TABLE 9.1 Specific Heats and Molar Heat Capacities for Some Common Substances at $25^{\circ} \mathrm{C}$		
	Specific Heat (c)	Molar Heat Capacity (C_{m})
Substance	$\mathrm{J} /\left(\mathrm{g} \cdot{ }^{\circ} \mathrm{C}\right)$	$\mathrm{J} /\left(\mathrm{mol} \cdot{ }^{\circ} \mathrm{C}\right)$
Air (dry)	1.01	29.1
Aluminum	0.897	24.2
Copper	0.385	24.4
Gold	0.129	25.4
Iron	0.449	25.1
Mercury	0.140	28.0
NaCl	0.859	50.2
Water (s) ${ }^{\text {a }}$	2.03	36.6
Water(l)	4.179	75.3

${ }^{a} \mathrm{At}-11^{\circ} \mathrm{C}$

Calorimetry and Heat Capacity

Assuming that a can of soda has the same specific heat as water, calculate the amount of heat (in kilojoules) transferred when one can (about 350 g) is cooled from $25^{\circ} \mathrm{C}$ to $3^{\circ} \mathrm{C}$.
$q=($ Specific heat $) \times($ Mass of substance $) \times \Delta T$

$$
\text { Specific heat }=4.18 \frac{\mathrm{~J}}{\mathrm{~g}^{\circ} \mathrm{C}} \quad \text { Mass }=350 \mathrm{~g}
$$

Temperature change $=3^{\circ} \mathrm{C}-25^{\circ} \mathrm{C}=-22^{\circ} \mathrm{C}$
Heat evolved $=\frac{4.18 \mathrm{~J}}{\mathrm{~g}^{\circ} \mathrm{C}} \times 350 \mathrm{~g} \times-22^{\circ} \mathrm{C}=-32000 \mathrm{~J}$

$$
-32000 \mathrm{~J} \times \frac{1 \mathrm{~kJ}}{1000 \mathrm{~J}}=-32 \mathrm{~kJ}
$$

HW 9.4: Calorimetry and Heat Capacity

What is the specific heat of lead in $\mathrm{J} / \mathrm{g}^{\circ} \mathrm{C}$ if it takes 97.2 J to raise the temperature of a 75.0 g block by $10.0^{\circ} \mathrm{C}$?

```
q=(specific heat) }\times\mathrm{ (mass of substance) }\times\Delta
q=c* * * }\Delta
```


HW 9.4: Calorimetry and Heat Capacity

What is the specific heat of lead in $\mathrm{J} / \mathrm{g}^{\circ} \mathrm{C}$ if it takes 97.2 J to raise the temperature of a 75.0 g block by $10.0^{\circ} \mathrm{C}$?

$$
\begin{aligned}
& q=(\text { specific heat }) \times(\text { mass of substance }) \times \Delta T \\
& q=c * m * \Delta T
\end{aligned}
$$

Specific heat $=? \quad \mathrm{q}=97.2 \mathrm{~J} \quad$ mass $=75.0 \mathrm{~g}, \Delta \mathrm{~T}=10.0^{\circ} \mathrm{C}$
$97.2 \mathrm{~J}=\mathrm{C} * 75.0 \mathrm{~g} * 10.0^{\circ} \mathrm{C}$
$\mathrm{C}=\frac{972 \mathrm{~J}}{75.0 \mathrm{~g} * 10.0^{\circ} \mathrm{C}}=\frac{0.1296 \mathrm{~J}}{\mathrm{~g}{ }^{\circ} \mathrm{C}}=\frac{0.130 \mathrm{~J}}{\mathrm{~g}{ }^{\circ} \mathrm{C}}$

Ex: Calorimetry and Heat Capacity

Given the following reaction being done in a calorimeter (constant pressure rxn)
$\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})+2 \mathrm{NaOH}(\mathrm{aq}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{Na}_{2} \mathrm{SO}_{4}(\mathrm{aq})$
When 25.0 mL of $1.0 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ is added to 50.0 mL of a 1.0 M NaOH at $25^{\circ} \mathrm{C}$ in a calorimeter, The temperature of the solution rises to $33.9^{\circ} \mathrm{C}$. If the specific heat of the solution is $4.18 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C}$ and density is $1.00 \mathrm{~g} / \mathrm{mL}$ and the calorimeter does not absorb much heat. What is q ?

$$
q=c \quad m \quad \Delta T \quad c=J /\left(g^{\circ} C\right)
$$

(probably will not get question like this on exam or test)

Mass water $=(25.0 \mathrm{~mL}+50 \mathrm{~mL}) * 1.00 \mathrm{~g} / \mathrm{mL}=\mathrm{m}=75.0 \mathrm{~g}$ $\mathrm{c}=4.18 \mathrm{~J} /\left(\mathrm{g}{ }^{\circ} \mathrm{C}\right)$

$$
\Delta \mathrm{T}=33.9^{\circ} \mathrm{C}-25^{\circ} \mathrm{C}=8.9^{\circ} \mathrm{C}
$$

$$
\mathrm{q}=\left(4.18 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C}\right)(75.0 \mathrm{~g})\left(8.9^{\circ} \mathrm{C}\right)=2790.15
$$

Hess's Law

Hess's Law: The overall enthalpy change for a reaction is equal to the sum of the enthalpy changes for the individual steps in the reaction. (bc enthalpy is state function)

Haber Process

$$
3 \mathrm{H}_{2}(g)+\mathrm{N}_{2}(g) \longrightarrow 2 \mathrm{NH}_{3}(g) \quad \Delta H^{\circ}=-92.2 \mathrm{~kJ}
$$

Hess's Law

Hess's Law: The overall enthalpy change for a reaction is equal to the sum of the enthalpy changes for the individual steps in the reaction.

Multiple-Step Process

$$
\begin{aligned}
2 \mathrm{H}_{2}(g)+\mathrm{N}_{2}(g) \longrightarrow \mathrm{N}_{2} \mathrm{H}_{4}(g) & \Delta H_{1}=? \\
\mathrm{~N}_{2} \mathrm{H}_{4}(g)+\mathrm{H}_{2}(g) \longrightarrow 2 \mathrm{NH}_{3}(g) & \Delta H^{\circ}=-187.6 \mathrm{~kJ} \\
\hline 3 \mathrm{H}_{2}(g)+\mathrm{N}_{2}(g) \longrightarrow 2 \mathrm{NH}_{3}(g) & \Delta H^{\circ}{ }_{1+2}=-92.2 \mathrm{~kJ}
\end{aligned}
$$

Hess's Law

$$
\begin{aligned}
& \Delta H_{1}{ }_{1}+\Delta H_{2}^{\circ}=\Delta H_{1+2}{ }_{1+2} \begin{aligned}
\Delta H_{1}^{\circ} & =\Delta H_{1+2}^{\circ}-\Delta H_{2}{ }_{2} \\
& =-92.2 \mathrm{~kJ}-(-187.6 \mathrm{~kJ})=+95.4 \mathrm{~kJ}
\end{aligned}
\end{aligned}
$$

HW 9.5: Hess's Law

Want enthalpy for the following reaction:

$$
\mathrm{CO}(\mathrm{~g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g}) \quad \Delta \mathrm{H}^{\mathrm{o}}=?
$$

Have the following equations and enthalpies:
(a) $2 \mathrm{CO}(\mathrm{g}) \rightarrow 2 \mathrm{C}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g})$
$\Delta \mathrm{H}^{\mathrm{o}}=221.08 \mathrm{~kJ}$
(b) $\mathrm{CO}_{2}(\mathrm{~g}) \rightarrow \mathrm{C}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g}) \quad \Delta \mathrm{H}^{0}=+393.51 \mathrm{~kJ}$

Use Hess's Law to calculate the enthalpy for the reaction above.

HW 9.5: Hess's Law

Want enthalpy for the following reaction:

$$
\mathrm{CO}(\mathrm{~g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g}) \quad \Delta \mathrm{H}^{\mathrm{o}}=?
$$

Have the following equations and enthalpies:
(a) $2 \mathrm{CO}(\mathrm{g}) \rightarrow 2 \mathrm{C}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g}) \quad \Delta \mathrm{H}^{\mathrm{o}}=221.08 \mathrm{~kJ}$
(b) $\mathrm{CO}_{2}(\mathrm{~g}) \rightarrow \mathrm{C}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g}) \quad \Delta \mathrm{H}^{\mathrm{o}}=+393.51 \mathrm{~kJ}$

Use Hess's Law to calculate the enthalpy for the reaction above.
(a) $1 / 2$ of rxn (a)
$\mathrm{CO}(\mathrm{g}) \rightarrow \mathscr{C}(\mathrm{s})+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \quad \Delta \mathrm{H}^{0}=+110.54 \mathrm{~kJ}$
(b) Reverse direction of reaction
$\mathrm{C}(\mathrm{s})+\mathrm{O} / 2(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g}) \quad \Delta \mathrm{H}^{0}=-393.51 \mathrm{~kJ}$
$\mathrm{CO}(\mathrm{g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g}) \quad \Delta \mathrm{H}^{0}=-282.97 \mathrm{~kJ}$

Standard Heats of Formation

Standard Heat of Formation $\left(\Delta H_{f}{ }_{f}\right)$: The enthalpy change for the formation of 1 mol of a substance in its standard state from its constituent elements in their standard states (textbook page A-8 has chart)

Standard states

$$
\mathrm{C}(s)+2 \mathrm{H}_{2}(g) \longrightarrow \mathrm{CH}_{4}(g), \quad \Delta H_{\mathrm{f}}^{\circ}=-74.8 \mathrm{~kJ}
$$

1 mol of a substance

Standard Heats of Formation (look up chart)

TABLE 9.2 Standard Heats of Formation for Some Common Substances at $25^{\circ} \mathrm{C}$

Substance	Formula	$\begin{gathered} \Delta H_{\mathrm{f}}^{\circ} \\ (\mathrm{kJ} / \mathrm{mol}) \end{gathered}$	Substance	Formula	$\underset{(\mathrm{kJ} / \mathrm{mol})}{\Delta H_{\mathrm{f}}^{\circ}}$
Acetylene	$\mathrm{C}_{2} \mathrm{H}_{2}(\mathrm{~g})$	227.4	Hydrogen chloride	$\mathrm{HCl}(\mathrm{g})$	-92.3
Ammonia	$\mathrm{NH}_{3}(\mathrm{~g})$	-46.1	Iron(III) oxide	$\mathrm{Fe}_{2} \mathrm{O}_{3}(s)$	-824.2
Carbon dioxide	$\mathrm{CO}_{2}(\mathrm{~g})$	-393.5	Magnesium carbonate	$\mathrm{MgCO}_{3}(s)$	-1095.8
Carbon monoxide	$\mathrm{CO}(\mathrm{g})$	-110.5	Methane	$\mathrm{CH}_{4}(\mathrm{~g})$	-74.8
Ethanol	$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(l)$	-277.7	Nitric oxide	$\mathrm{NO}(\mathrm{g})$	91.3
Ethylene	$\mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{~g})$	52.3	Water (g)	$\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$	-241.8
Glucose	$\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}(s)$	1273.3	Water (l)	$\mathrm{H}_{2} \mathrm{O}(l)$	-285.8

Standard Heats of Formation - generalized equation

$$
\begin{gathered}
\left.\Delta H^{\circ}=\Delta H_{\mathrm{f}}^{\circ}(\text { Products })-\Delta H_{\mathrm{f}}^{\circ} \text { (Reactants }\right) \\
a \mathrm{~A}+b \mathrm{~B} \longrightarrow c \mathrm{C}+d \mathrm{D}
\end{gathered}
$$

This is a generalized balanced chemical reaction where $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}$ are the coeffients for the balanced chemical reaction.

$$
\Delta H^{\circ}=\underbrace{\left[c \Delta H_{\mathrm{f}}^{\circ}(\mathrm{C})+d \Delta H_{\mathrm{f}}^{\circ}(\mathrm{D})\right]}_{\text {Products }}-[\underbrace{\left.a \Delta H_{\mathrm{f}}^{\circ}(\mathrm{A})+b \Delta H_{\mathrm{f}}(\mathrm{~B})\right]}_{\text {Reactants }}
$$

Standard Heats of Formation

Using standard heats of formation, calculate the standard enthalpy of reaction for the photosynthesis of glucose $\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\right)$ and O_{2} from CO_{2} and liquid $\mathrm{H}_{2} \mathrm{O}$.

$$
6 \mathrm{CO}_{2}(g)+6 \mathrm{H}_{2} \mathrm{O}(\Lambda) \longrightarrow \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}(s)+6 \mathrm{O}_{2}(g)
$$

$$
\Delta H^{\circ}=?
$$

Standard Heats of Formation - use chart

$6 \mathrm{CO}_{2}(g)+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \longrightarrow \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}(\mathrm{~s})+6 \mathrm{O}_{2}(\mathrm{~g})$
$\Delta H^{\circ}=?$
$\Delta H^{\circ}=\left[\Delta \Delta H_{\mathrm{f}}^{\circ}\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}(s)\right) X-\right.$
$\left[6 \Delta H_{\mathrm{f}}^{\circ}\left(\mathrm{CO}_{2}(g)\right)+6 \Delta H_{\mathrm{f}}^{\mathrm{f}}\left(\mathrm{H}_{2} \mathrm{O}(\mathrm{I})\right)\right]$
$\Delta H^{\circ}=[(1 \mathrm{~mol})(-1260 \mathrm{~kJ} / \mathrm{mol})]-$
$[(6 \mathrm{~mol})(-393.5 \mathrm{~kJ} / \mathrm{mol})+(6 \mathrm{~mol})(-285.8 \mathrm{~kJ} / \mathrm{mol})]$

$$
\begin{aligned}
& \Delta H_{\mathrm{f}}{ }^{[}\left[\mathrm{O}_{2}(\mathrm{~g})\right]=\text { zero } \\
& \text { because most } \\
& \text { stable form of } \\
& \text { element }
\end{aligned}
$$

$\Delta H_{\mathrm{f}}^{\circ}=$ zero
Most stable form of elements $\mathrm{Fe}(\mathrm{s}), \mathrm{H}_{2}(\mathrm{~g})$
$\Delta H^{\circ}=2816 \mathrm{~kJ}$
end $1 / 13 / 20$ Monday A section, end $1 / 14$ Tuesday C section after HW 9.6 on next slide

HW 9.6: Standard Heats of Formation

$$
\left.\Delta H^{\circ}=\Delta H_{\mathrm{f}}^{\circ}(\text { Products })-\Delta H_{\mathrm{f}}^{\circ} \text { (Reactants }\right) ~(\mathrm{aA}+b \mathrm{~B} \longrightarrow c \mathrm{C}+d \mathrm{D}
$$

$$
\underbrace{2 \mathrm{Cl}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})}_{\text {Reactants }} \rightarrow \underbrace{4 \mathrm{HCl}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})}_{\text {Products }}
$$

$\Delta H_{\mathrm{f}}^{\circ}[\mathrm{HCl}(\mathrm{g})]=-92.31 \mathrm{~kJ} / \mathrm{mol}$ from chart Appendix B $\left.\Delta H_{\mathrm{f}}^{\circ}\left[\mathrm{H}_{2} \mathrm{O}(\mathrm{l})\right]=-285.8 \mathrm{~kJ} / \mathrm{mol}\right\}$ from your text

HW 9.6: Standard Heats of Formation - generalized equation

$$
\Delta H^{\circ}=\Delta H_{\mathrm{f}}^{\circ} \text { (Products) }-\Delta H_{\mathrm{f}}^{\circ} \text { (Reactants) }
$$

$$
\underbrace{\substack{a \mathrm{~A} \\ 2 \mathrm{Cl}_{2}(\mathrm{~g})+2 \mathrm{~B} \longrightarrow c \mathrm{C}+d \mathrm{D} \\ \mathrm{H}_{2} \mathrm{O}(\mathrm{l})}}_{\text {Reactants }} \underbrace{4 \mathrm{HCl}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})}_{\text {Products }}
$$

$$
\begin{aligned}
& \Delta H^{\circ}=\left\{\left[4 \Delta H_{\mathrm{f}}^{\circ}(\mathrm{HCl}(\mathrm{~g}))\right]+\left[\Delta H_{\mathrm{f}}^{\circ}\left(\mathrm{O}_{2}(\mathrm{~g})\right)\right]\right\} \\
& -\left\{\left[2 \Delta H_{\mathrm{f}}^{\circ}\left(\mathrm{Cl}_{2}(\mathrm{~g})\right)\right]+\left[2 \Delta H_{\mathrm{f}}^{\circ}\left(\mathrm{H}_{2} \mathrm{O}(\mathrm{l})\right)\right]\right\}
\end{aligned}
$$

$$
\Delta H^{\circ}=\{[4(-92.31)]+[(0.00)]\}-\{[2(0.00)]+[2(-285.8)]\}
$$

$$
\Delta H^{\circ}=\{4(-92.31)\}-\{[2(-285.8)]\}
$$

$$
\Delta H^{\circ}=\{4(-92.31)\}-\{[2(-285.8)]\}=
$$

$$
-369.24+571.6=202.4 \mathrm{~kJ}
$$

End Quiz 1 Start Quiz 2 after this slide

Bond Dissociation Energies

Bond dissociation energies are standard enthalpy changes for the corresponding bond-breaking reactions.

TABLE 7.2 Average Bond Dissociation Energies, D(kJ/mol)

$\mathrm{H}-\mathrm{H}$	436^{a}	$\mathrm{C}-\mathrm{H}$	410	$\mathrm{~N}-\mathrm{H}$	390	$\mathrm{O}-\mathrm{F}$	180	$\mathrm{I}-\mathrm{I}$	151^{a}
$\mathrm{H}-\mathrm{C}$	410	$\mathrm{C}-\mathrm{C}$	350	$\mathrm{~N}-\mathrm{C}$	300	$\mathrm{O}-\mathrm{Cl}$	200	$\mathrm{~S}-\mathrm{F}$	310
$\mathrm{H}-\mathrm{F}$	570^{a}	$\mathrm{C}-\mathrm{F}$	450	$\mathrm{~N}-\mathrm{F}$	270	$\mathrm{O}-\mathrm{Br}$	210	$\mathrm{~S}-\mathrm{Cl}$	250
$\mathrm{H}-\mathrm{Cl}$	432^{a}	$\mathrm{C}-\mathrm{Cl}$	330	$\mathrm{~N}-\mathrm{Cl}$	200	$\mathrm{O}-\mathrm{I}$	220	$\mathrm{~S}-\mathrm{Br}$	210
$\mathrm{H}-\mathrm{Br}$	366^{a}	$\mathrm{C}-\mathrm{Br}$	270	$\mathrm{~N}-\mathrm{Br}$	240	$\mathrm{O}-\mathrm{N}$	200	$\mathrm{~S}-\mathrm{S}$	225
$\mathrm{H}-\mathrm{I}$	298^{a}	$\mathrm{C}-\mathrm{I}$	240	$\mathrm{~N}-\mathrm{N}$	240	$\mathrm{O}-\mathrm{O}$	180		
$\mathrm{H}-\mathrm{N}$	390	$\mathrm{C}-\mathrm{N}$	300	$\mathrm{~N}-\mathrm{O}$	200	$\mathrm{~F}-\mathrm{F}$	159^{a}		
$\mathrm{H}-\mathrm{O}$	460	$\mathrm{C}-\mathrm{O}$	350	$\mathrm{O}-\mathrm{H}$	460	$\mathrm{Cl}-\mathrm{Cl}$	243^{a}		
$\mathrm{H}-\mathrm{S}$	340	$\mathrm{C}-\mathrm{S}$	260	$\mathrm{O}-\mathrm{C}$	350	$\mathrm{Br}-\mathrm{Br}$	193^{a}		
Multiple covalent bonds									
$\mathrm{C=C}$	728	$\mathrm{C} \equiv \mathrm{C}$	965	$\mathrm{C}=\mathrm{O}$	732	$\mathrm{O}=\mathrm{O}$	498^{a}	$\mathrm{N} \equiv \mathrm{N}$	945^{a}

${ }^{a}$ Exact value.

${ }^{\mathrm{b}}$ We'll discuss multiple covalent bonds in Section 7.5.

Bond Dissociation Energies

$$
\mathrm{H}_{2}(g)+\mathrm{Cl}_{2}(g) \longrightarrow 2 \mathrm{HCl}(g)
$$

$\Delta H^{\circ}=D($ Reactant bonds) $-D$ (Product bonds)

$$
\Delta H^{\circ}=\left(D_{\mathrm{H}-\mathrm{H}}+D_{\mathrm{Cl}-\mathrm{Cl}}\right)-\left(2 D_{\mathrm{H}-\mathrm{Cl}}\right)
$$

$\Delta H^{\circ}=[(1 \mathrm{~mol})(436 \mathrm{~kJ} / \mathrm{mol})+(1 \mathrm{~mol})(243 \mathrm{~kJ} / \mathrm{mol})]-$
(2 mol)(432 kJ/mol)
$\Delta H^{\circ}=-185 \mathrm{~kJ}$

Ex: Calorimetry and Heat Capacity

Given the following reaction being done in a calorimeter (constant pressure rxn)
$\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})+2 \mathrm{NaOH}(\mathrm{aq}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{Na}_{2} \mathrm{SO}_{4}(\mathrm{aq})$
When 25.0 mL of $1.0 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ is added to 50.0 mL of a 1.0 M NaOH at $25^{\circ} \mathrm{C}$ in a calorimeter, The temperature of the solution rises to $33.9^{\circ} \mathrm{C}$. If the specific heat of the solution is $4.18 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C}$ and density is $1.00 \mathrm{~g} / \mathrm{mL}$ and the calorimeter does not absorb much heat. What is q ?

$$
q=c \quad m \quad \Delta T \quad c=J /\left(g^{\circ} C\right)
$$

(probably will not get question like this on exam or test)

Mass water $=(25.0 \mathrm{~mL}+50 \mathrm{~mL}) * 1.00 \mathrm{~g} / \mathrm{mL}=\mathrm{m}=75.0 \mathrm{~g}$ $\mathrm{c}=4.18 \mathrm{~J} /\left(\mathrm{g}{ }^{\circ} \mathrm{C}\right)$

$$
\Delta \mathrm{T}=33.9^{\circ} \mathrm{C}-25^{\circ} \mathrm{C}=8.9^{\circ} \mathrm{C}
$$

$$
\mathrm{q}=\left(4.18 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C}\right)(75.0 \mathrm{~g})\left(8.9^{\circ} \mathrm{C}\right)=2790.15
$$

ex: Calorimetry and Heat Capacity (continue)

Given the following reaction being done in a calorimeter (constant pressure rxn) $\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})+2 \mathrm{NaOH}(\mathrm{aq}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{Na}_{2} \mathrm{SO}_{4}(\mathrm{aq})$

When 25.0 mL of $1.0 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ is added to 50.0 mL of a 1.0 M NaOH at $25^{\circ} \mathrm{C}$ in a calorimeter, The temperature of the solution rises to $33.9^{\circ} \mathrm{C}$. If the specific heat of the solution is $4.18 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C}$ and density is $1.00 \mathrm{~g} / \mathrm{mLand}$ the calorimeter does not absorb much heat. What is q ? What is $\Delta \mathrm{H}$ for the RXN as written for $1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{SO}_{4}$?

$$
\mathrm{q}=\left(4.18 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C}\right)(75.0 \mathrm{~g})\left(8.9^{\circ} \mathrm{C}\right)=2790.15 \mathrm{~J}
$$

(probably will not get question like this on exam or test)

Is $\mathrm{q}=\Delta \mathrm{H}$? (a) Is heating water \& calorimeter the reaction? OR (b) Is the reaction the neutralization reaction?
(a) heating water \& calorimeter = surroundings $(2790.15 \mathrm{~J})$ q (for surroundings) $\neq \Delta \mathrm{H}$ (for reaction, system) $=2790.15 \mathrm{~J}$
(b) reaction: $\mathrm{H}_{2} \mathrm{SO}_{4}+2 \mathrm{NaOH}=$ system $(-2790.15 \mathrm{~J}$ for 25.0 mL of 1.0 $\mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$) q (for system) $=\Delta \mathrm{H}=-\mathrm{q}$ (surrounding) $=-2790.15 \mathrm{~J}$

ex: Calorimetry and Heat Capacity (continue)

Given the following reaction being done in a calorimeter (constant pressure rxn) $\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})+2 \mathrm{NaOH}(\mathrm{aq}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{Na}_{2} \mathrm{SO}_{4}(\mathrm{aq})$

When 25.0 mL of $1.0 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ is added to 50.0 mL of a 1.0 M NaOH at $25^{\circ} \mathrm{C}$ in a calorimeter, The temperature of the solution rises to $33.9^{\circ} \mathrm{C}$. If the specific heat of the solution is $4.18 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C}$ and density is $1.00 \mathrm{~g} / \mathrm{mL}$ and the calorimeter does not absorb much heat. What is q ? What is $\Delta \mathrm{H}$ for the RXN as written for $1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{SO}_{4}$?

$$
\mathrm{q}=\left(4.18 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C}\right)(75.0 \mathrm{~g})\left(8.9^{\circ} \mathrm{C}\right)=2790.15 \mathrm{~J}
$$

our q is for 25.0 mL of $1 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ (probably will not get question like this on exam or test)
$1.0 \mathrm{~mol} \mathrm{H}_{2} \mathrm{SO}_{4}^{*}-2790.15 \mathrm{~J}=-111606 \mathrm{~J} / \mathrm{mol}=-111.6 \mathrm{~kJ} / \mathrm{mol} \Delta \mathrm{H}$ $0.025 \mathrm{~mol} \mathrm{H}_{2} \mathrm{SO}_{4}$

End 1/15 A section

An Introduction to Entropy

Spontaneous Process: A process that, once started, proceeds on its own without a continuous external influence (going downhill in energy)

An Introduction to Entropy

Entropy (S): The amount of molecular randomness in a system

solid (low S) \rightarrow liquid (medium S) \rightarrow gas (high S)

An Introduction to Entropy

Spontaneous processes are (memorize this)

- favored by a decrease in H (negative ΔH).
(reaction spontaneously releases heat)
- favored by an increase in S (positive ΔS).
(reaction spontaneously becomes more disordered)

Nonspontaneous processes are

- favored by an increase in H (positive ΔH).
- favored by a decrease in S (negative ΔS).

An Introduction to Free Energy

Gibbs Free-Energy Change ($\Delta \boldsymbol{G}$)

Enthalpy of Reaction kJ/mol
(- $\Delta \mathrm{H}$ spontaneous) reaction releases heat
$\Delta \mathrm{G}=$ negative
$\Delta \mathrm{H}=$ negative
$\Delta \mathrm{S}=$ positive

End $1 / 15$ Wed

C section

An Introduction to Free Energy

Gibbs Free-Energy Change ($\Delta \boldsymbol{G}$)

$$
\begin{array}{|l|l}
\Delta G=\Delta H-\mathrm{T} \Delta S & \begin{array}{l}
\text { high T: } \\
\text { low } \mathrm{T}: ~
\end{array} \Delta \mathrm{~S} \text { decides decides }
\end{array}
$$

$\Delta G<0 \quad$ Process is spontaneous. (rxn goes \rightarrow)
$\Delta G=0 \quad$ Process is at equilibrium
(neither spontaneous nor nonspontaneous).
$\Delta G>0 \quad$ Process is nonspontaneous. (rxn goes $\leftarrow)$

HW 9.7: An Introduction to Free Energy

$$
\Delta G=\Delta H-T \Delta S
$$

Spontaneous
(rxn goes \rightarrow)
$\Delta \mathrm{G}=$ negative
$\Delta \mathrm{H}=$ negative
(\leftarrow nonspontaneous) $\Delta \mathrm{S}=$ positive

Complete the following table:

$\Delta \mathrm{G}$	$\Delta \mathrm{H}$	$\Delta \mathrm{S}$	T	spontaneous (yes,no,maybe)
-	+	+	large	-
-	-	+	small	-
-	-	-	large	-
-	-	small	-	

HW 9.7: An Introduction to Free Energy

$$
\Delta G=\Delta H-T \Delta S
$$

Spontaneous
(rxn goes \rightarrow)
(\leftarrow nonspontaneous) $\Delta \mathrm{S}=$ positive

Complete the following table:

$\Delta \mathrm{G}$	$\Delta \mathrm{H}$	$\Delta \mathrm{S}$	T	spontaneous (yes,n,maybe)
neg	+	+	large	spontaneous
sec				
neg	-	+	small	spontaneous
pos	-	-	large	not spontaneous
neg	-	-	small	spontaneous

End 1/17F
A \& C section

HW 9.8: An Introduction to Free Energy

If $\Delta \mathrm{H}=42 \mathrm{~kJ}$ and $\Delta \mathrm{S}=-111 \mathrm{~J} / \mathrm{K}$ at 400 K , (a) what is $\Delta \mathrm{G}$?
(b) Is the reaction spontaneous ?

HW 9.8: An Introduction to Free Energy

$$
\begin{array}{|ll}
\Delta G=\Delta H-\mathrm{T} \Delta S & \begin{array}{ll}
\underline{\text { Spontaneous }} & \Delta \mathrm{G}=\text { negative } \\
(\text { rxn goes } \rightarrow) & \Delta \mathrm{H}=\text { negative } \\
(\leftarrow \text { nonspontaneous }) & \Delta \mathrm{S}=\text { positive }
\end{array}
\end{array}
$$

If $\Delta \mathrm{H}=42 \mathrm{~kJ}$ and $\Delta \mathrm{S}=-111 \mathrm{~J} / \mathrm{K}$ at 400 K , (a) what is $\Delta \mathrm{G}$?

$$
\begin{aligned}
\Delta \mathrm{G} & =42 \mathrm{~kJ} * 1000 \mathrm{~J} / \mathrm{kJ}-(400 \mathrm{~K})(-111 \mathrm{~J} / \mathrm{K})=42000 \mathrm{~J}+44400 \mathrm{~J} \\
& =86400 \mathrm{~J}=86.4 \mathrm{~kJ}
\end{aligned}
$$

(b) Is the reaction spontaneous? no

