


# Lecture Presentation Chapter 2 Atoms, Molecules, and lons

HW: 2.2, 2.3, 2.4, 2.5, 2.7, 2.8, 2.11, 2.13, 2.16, 2.17, 2.19, 2.21, 2.23, 2.24, 2.31, 2.40, 2.46, 2.48, 2.52, 2.60, 2.76?, 2.78?, 2.92, 2.96, 2.98, 2.112, 2.114, 2.124, 2.132, 2.138, 2.142, 2.144, 2.146

John E. McMurry Robert C. Fay

#### **Chemistry and the Elements**

TABLE 2.1 Names and Symbols of Some Common Elements. Latin names from which the symbols of some elements are derived are shown in parentheses.

| Aluminum | Al | Chlorine  | Cl | Manganese  | Mn | Copper (cuprum)       | Cu |
|----------|----|-----------|----|------------|----|-----------------------|----|
| Argon    | Ar | Fluorine  | F  | Nitrogen   | N  | Iron (ferrum)         | Fe |
| Barium   | Ba | Helium    | He | Oxygen     | O  | Lead (plumbum)        | Pb |
| Boron    | В  | Hydrogen  | Н  | Phosphorus | P  | Mercury (hydrargyrum) | Hg |
| Bromine  | Br | Iodine    | I  | Silicon    | Si | Potassium (kalium)    | K  |
| Calcium  | Ca | Lithium   | Li | Sulfur     | S  | Silver (argentum)     | Ag |
| Carbon   | C  | Magnesium | Mg | Zinc       | Zn | Sodium (natrium)      | Na |

memorize name & symbols for following (next slide) table – most are obvious (C, N, O, S, Ca, etc)

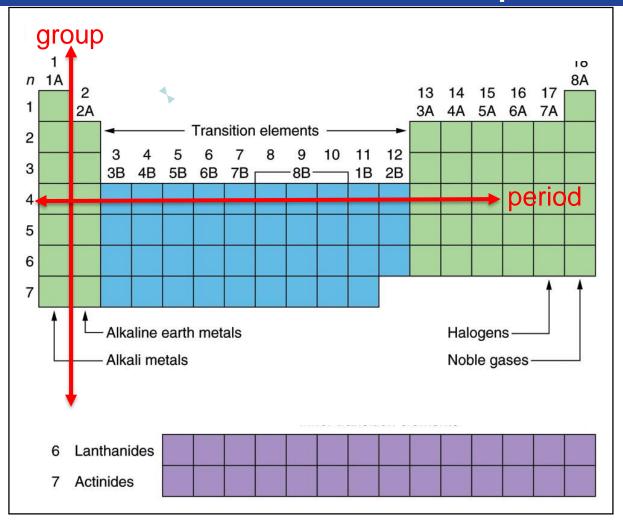
| H  | 1  | ΠΑ       | N                                  | Лen              | nor       | ize       | nar      | ne d                      | &        |          |          | 11       | IIA I    | VA                            | VA V     | VIA V                                   | 'IIA     | VIIIA    |
|----|----|----------|------------------------------------|------------------|-----------|-----------|----------|---------------------------|----------|----------|----------|----------|----------|-------------------------------|----------|-----------------------------------------|----------|----------|
| Li | 3  | Be 4     | symbols for –NOT shaded  5 6 7 8 9 |                  |           |           |          |                           |          |          |          |          | Ne       |                               |          |                                         |          |          |
| Na | 11 | 12<br>Mg | IIIB                               | IVB              | VB        | VIB V     | VIIB     | V                         | IIIB     | - 1      | IB I     | ΊΒ       | Al       | Si                            | 15<br>P  | 16<br>S                                 | Cl       | Ar       |
| K  | 19 | Ca Ca    | Sc 21                              | 22<br>Ti         | 23<br>V   | Cr 24     | 25<br>Mn | Fe 26                     | 27<br>Co | 28<br>Ni | Cu 29    | 30<br>Zn | 31<br>Ga | Ge 32                         | 33<br>As | Se Se                                   | 35<br>Br | Kr       |
| Rb | 37 | 38<br>Sr | 39<br>Y                            | Zr 40            | 41<br>Nb  | 42<br>Mo  | 43<br>Tc | 44<br>Ru                  | 45<br>Rh | 46<br>Pd | Ag       | 48<br>Cd | 49<br>In | 50<br>Sn                      | 51<br>Sb | Te 52                                   | 53<br>I  | Xe       |
| Cs | 55 | 56<br>Ba | 57<br>La*                          | 72<br><b>H</b> f | 73<br>Ta  | 74<br>W   | 75<br>Re | 76<br>Os                  | 77<br>Ir | 78<br>Pt | 79<br>Au | 80<br>Hg | 81<br>Tl | Pb                            | 83<br>Bi | Po 84                                   | 85<br>At | Rn       |
| Fr | 87 | Ra       | 89<br>Ac+                          | 104<br>??        | 105<br>?? | 106<br>?? |          |                           |          |          |          |          |          |                               |          |                                         |          | <u> </u> |
|    |    |          | thanides                           | Ce 9             | Pr 9      | 9 2       | 9        | 6<br>2<br>8m Eu<br>9<br>4 | Gd 9 5   | 9 9 6 7  | 6 Dy 9   | 9        | 100      | 6<br>9<br>2m Y<br>101<br>Md N | 102 1    | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |          |          |

Do not need to memorize for 1st quiz & test. Will put rest

on later quizzes & exams
Instructor's Resource Materials (Download only) for Chemistry, 7e

| /       | /  | omic N<br>emical |     |     |     |     |     |     |     |     |     |     |     |     |     |     |         |
|---------|----|------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|---------|
| 1/<br>H |    |                  |     |     |     |     |     |     |     |     |     |     |     |     |     |     | 2<br>He |
| 3       | 4  | )                |     |     |     |     |     |     |     |     |     | 5   | 6   | 7   | 8   | 9   | 10      |
| Li      | Ве |                  |     |     |     |     |     |     |     |     |     | В   | C   | N   | 0   | F   | Ne      |
| 11      | 12 |                  |     |     |     |     |     |     |     |     |     | 13  | 14  | 15  | 16  | 17  | 18      |
| Na      | Mg |                  |     |     |     |     |     |     |     |     |     | Al  | Si  | P   | S   | Cl  | Ar      |
| 19      | 20 | 21               | 22  | 23  | 24  | 25  | 26  | 27  | 28  | 29  | 30  | 31  | 32  | 33  | 34  | 35  | 36      |
| K       | Ca | Sc               | Ti  | V   | Cr  | Mn  | Fe  | Co  | Ni  | Cu  | Zn  | Ga  | Ge  | As  | Se  | Br  | Kr      |
| 37      | 38 | 39               | 40  | 41  | 42  | 43  | 44  | 45  | 46  | 47  | 48  | 49  | 50  | 51  | 52  | 53  | 54      |
| Rb      | Sr | Y                | Zr  | Nb  | Mo  | Tc  | Ru  | Rh  | Pd  | Ag  | Cd  | In  | Sn  | Sb  | Te  | I   | Xe      |
| 55      | 56 | 71               | 72  | 73  | 74  | 75  | 76  | 77  | 78  | 79  | 80  | 81  | 82  | 83  | 84  | 85  | 86      |
| Cs      | Ba | Lu               | Hf  | Ta  | W   | Re  | Os  | Ir  | Pt  | Au  | Hg  | Tl  | Pb  | Bi  | Po  | At  | Rn      |
| 87      | 88 | 103              | 104 | 105 | 106 | 107 | 108 | 109 | 110 | 111 | 112 | 113 | 114 | 115 | 116 | 117 | 118     |
| Fr      | Ra | Lr               | Rf  | Db  | Sg  | Bh  | Hs  | Mt  | Ds  | Rg  | Cn  |     |     |     |     |     |         |
|         |    |                  | 1   |     |     | 1   |     |     |     |     | 1   |     |     | 1   |     | /   | 1       |
|         |    |                  | 57  | 58  | 59  | 60  | 61  | 62  | 63  | 64  | 65  | 66  | 67  | 68  | 69  | 70  | )       |
|         |    |                  | La  | Ce  | Pr  | Nd  | Pm  | Sm  | Eu  | Gd  | Tb  | Dy  | Но  | Er  | Tm  | Yb  |         |
|         |    |                  | 89  | 90  | 91  | 92  | 93  | 94  | 95  | 96  | 97  | 98  | 99  | 100 | 101 | 102 | 1       |
|         |    |                  | Ac  | Th  | Pa  | U   | Np  | Pu  | Am  | Cm  | Bk  | Cf  | Es  | Fm  | Md  | No  |         |
|         |    |                  |     |     | 1   |     |     |     | 1   | 1   | -   | 1   | -   | 1   | 1   | 1   | 1       |

#### **Elements and the Periodic Table**


**Periods**: 7 horizontal rows

**Groups**: 18 vertical columns

- International standard: 1–18
- U.S. system: 1A–8A, 1B–8B

# The Periodic Table – Divided into Periods and Groups

9/4 W D end



#### **Elements and the Periodic Table**

#### **Main Groups**

- Columns 1A–2A (2 groups)
- Columns 3A–8A (6 groups)

Transition Metals: 3B-2B (8 groups, 10 columns)

Inner Transition Metals: 14 groups between 3B and 4B

Lanthanides F 9/4 W

Actinides end

#### Intensive Properties: Independent of sample size

- Temperature
- Melting point
- Density

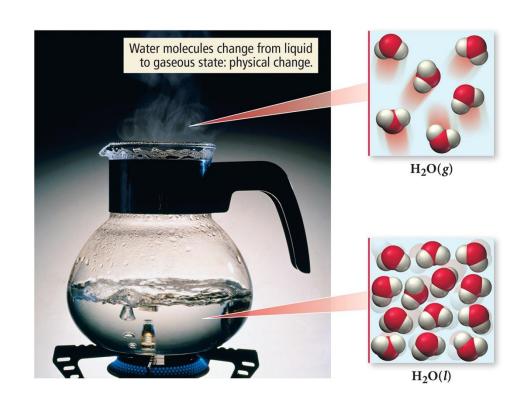
#### Extensive Properties: Dependent on sample size

- Length
- Volume

Physical Properties: Characteristics that *do not* involve a change in a sample's chemical makeup

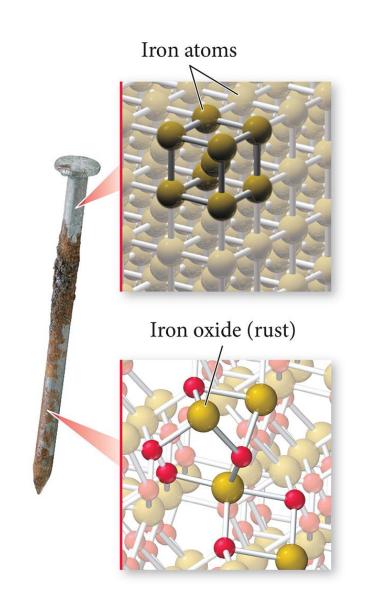
Chemical Properties: Characteristics that *do* involve a change in a sample's chemical makeup

| TABLE 2.3 Some Examples of Physical and Chemical Properties |                     |                          |  |  |  |  |  |  |  |
|-------------------------------------------------------------|---------------------|--------------------------|--|--|--|--|--|--|--|
| Physical Prope                                              | Chemical Properties |                          |  |  |  |  |  |  |  |
| Temperature                                                 | Amount              | Rusting (of iron)        |  |  |  |  |  |  |  |
| Color                                                       | Odor                | Combustion (of gasoline) |  |  |  |  |  |  |  |
| Melting point                                               | Solubility          | Tarnishing (of silver)   |  |  |  |  |  |  |  |
| Electrical conductivity                                     | Hardness            | Cooking (of an egg)      |  |  |  |  |  |  |  |


#### Physical and Chemical Changes

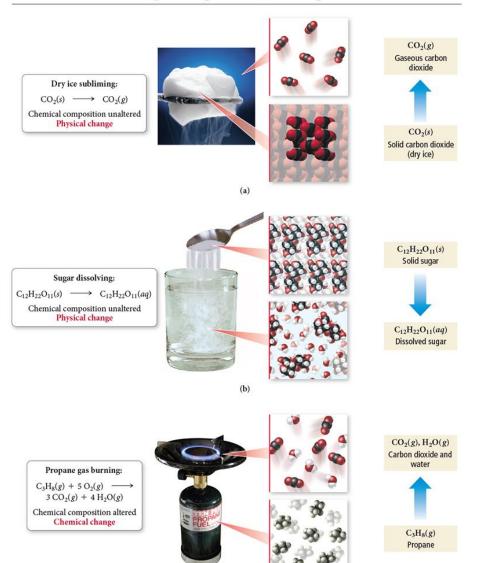
#### **Physical Change:**

- Changes that alter only the state or appearance of a substance, but not composition, are physical changes. (state = gas, liquid, solid)
- The atoms or molecules that compose a substance do not change their identity during a physical change. (no change in chemical composition)


#### Physical Change

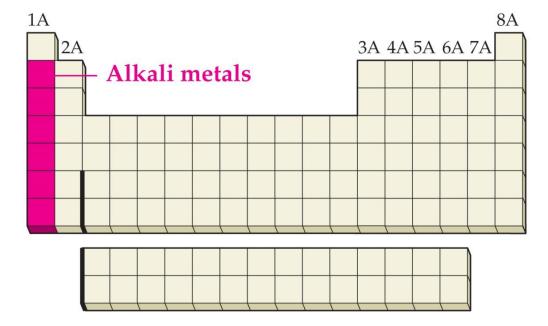
- When water boils, it changes its state from a liquid to a gas.
- The gas remains composed of water molecules, so this is a physical change.



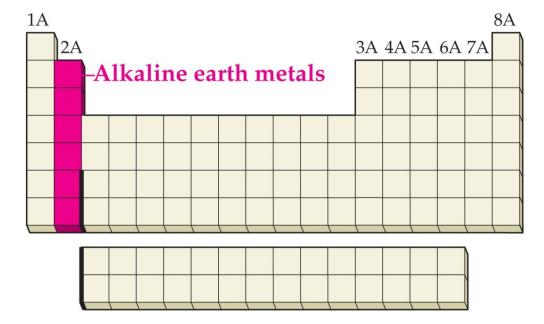

#### **Chemical Change**

- Changes that alter the composition of matter are chemical changes.
- During a chemical change, atoms rearrange, transforming the original substances into different substances.
- Rusting of iron is a chemical change.

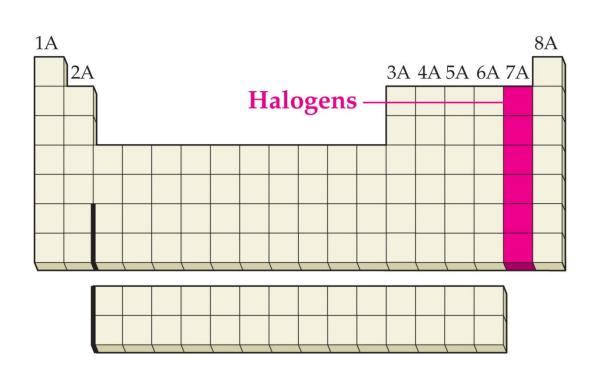



#### Physical and Chemical Changes

**Physical Change versus Chemical Change** 

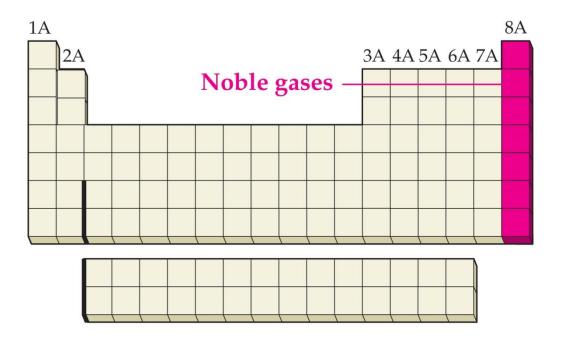






silvery metal, very reactive with water forms alkali (base) compounds





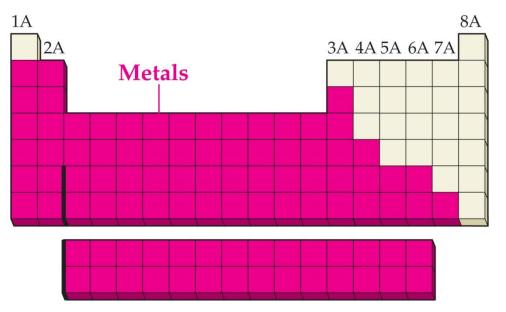



silvery metal, less reactive than alkali metals



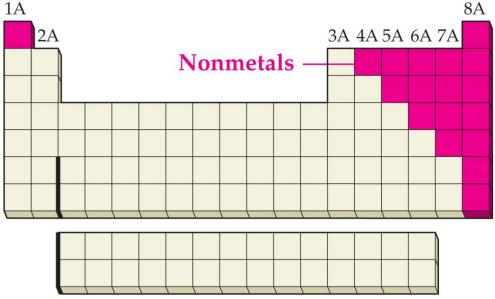
colorful corrosive nonmetals, very reactive



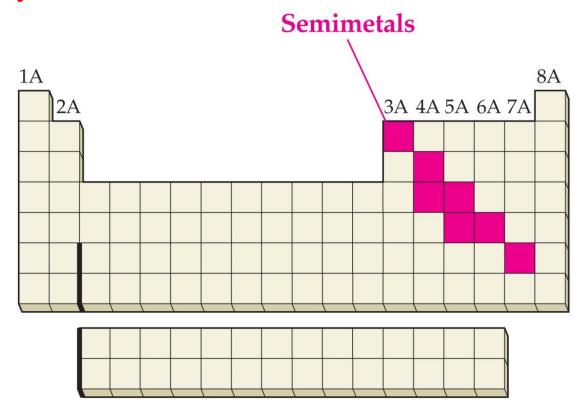





colorless nonmetal, very unreactive


**Metals**: Left side of the zigzag line in the periodic table (except for hydrogen) – usually solid, silvery, good conductor (heat, electricity), malleable






Nonmetals: Right side of the zigzag line in the periodic table - mostly gases, brightly colored, brittle, bad conductor of heat & electricity





**Semimetals (metalloids)**: Tend to lie along the zigzag line in the periodic table – all are solid, most are silvery, brittle & not conductive



HW: circle & label the periodic table with (a) main group elements (b) transition metals (c) actinide/lanthanide (d) periods (e) groups (f) alkali metals (g) alkaline earth metals IA 7A 8A (h) halogens (i) metals (j) non metals (k) metalloids Н He 1.008 4A 4.003 5A 64 End G sect 9/4, end 9/5D 5 <sup>6</sup>С 9 Li Be В 0 F N Ne 9.01 6.94 18.01 12.011 14.01 16.00 19.00 20.18 83 Mg 16 S 15 18 Na Si Al CL Ar 36 40 56 63 20 23 22.99 B 24.31 26.98 28.09 30.97 32.06 35.45 39.95 20 . <sup>22</sup> Ti 24 Cr <sup>27</sup>Co 30 **Z**n 31 **G**a 26 32 33 34 35 36 K Ca ScMn Fe Ni Cu Ge Se BrKr As 39.10 40.08 44.96 47.90 50.94 52.00 58.93 54.94 55.85 58.71 63.55 65.37 69.72 72.59 74.92 78.96 79.90 83.80 37 38 30 40 44 46 49 50 54 Xe 52 53 Sr7.r Rb Y Nb Tc Ru Rh Pd Cd Mo Ag Sn Sb In Te Ī 85.47 87.62 88.91 91.22 92,91 95,94 98.91 101.07 102.91 106.4 107.87 112.40 114.82 118.69 121.75 127.60 126.90 131.30 72 **H**f SS Cs 56 **Ba** 76 Os 86 **R**n 83 Ťа W La Re Ir Ρt Αu Hg TIPb Bi Po At 132.91 137.34 138.91 178.49 180.95 183.85 192.2 195.09 196.97 186.2 190.2 200.59 204.37 207.19 208.98 (209)(210)(222) 104 . 105 106 107 109 Fr Ung\* Ra Unp\* Unh\* Uns\* Uno\* Una\* Ac (223) 226.03 (227)(261)(262)(262)(265)(266)(263)

| Lanthanides | 58         | 59     | 60     | 61        | 62     | 63        | 64     | 65        | 66        | 67        | 68     | 69        | 70        | 7 l    |
|-------------|------------|--------|--------|-----------|--------|-----------|--------|-----------|-----------|-----------|--------|-----------|-----------|--------|
|             | Ce         | Pr     | Nd     | Pm        | Sm     | <b>Eu</b> | Gd     | <b>Tb</b> | <b>Dy</b> | <b>Ho</b> | Er     | Tm        | <b>Yb</b> | Lu     |
|             | 140.12     | 140.91 | 144,24 | (145)     | 150.35 | 151.96    | 157.25 | 158.93    | 162.50    | 164.93    | 167.26 | 168.93    | 173.04    | 174.97 |
| Actinides   | 90         | 91     | 92     | 93        | 94     | 95        | 96     | 97        | 98        | 99        | 100    | 101       | 102       | 103    |
|             | T <b>h</b> | Pa     | U      | <b>Np</b> | Pu     | <b>Am</b> | Cm     | Bk        | <b>Cf</b> | <b>Es</b> | Fm     | <b>Md</b> | <b>No</b> | Lr     |
|             | 232.04     | (231)  | 238.03 | (237)     | (244)  | (243)     | (247)  | (249)     | (249)     | (254)     | (257)  | (258)     | (259)     | (260)  |

<sup>\*</sup>Symbol (and name) provisional.

Numbers in parentheses: available radioactive isotope of longest half-life.

# Conservation of Mass and the Law of Definite Proportions

Law of Conservation of Mass: Mass is neither created nor destroyed in chemical reactions.

Aqueous solutions of mercury(II) nitrate and potassium iodide will react to form a precipitate of mercury(II) iodide and aqueous potassium iodide.

3.25 g + 3.32 g = 6.57 g  

$$Hg(NO_3)_2(aq) + 2KI(aq) \longrightarrow HgI_2(s) + 2KNO_3(aq)$$
  
4.55 g + 2.02 g = 6.57 g

# Conservation of Mass and the Law of Definite Proportions



Known amounts of solid KI and solid Hg(NO<sub>3</sub>)<sub>2</sub> are weighed and then dissolved in water.



The solutions are mixed to give solid Hgl<sub>2</sub>, which is removed by filtration.



The solution that remains is evaporated to give solid KNO<sub>3</sub>. On weighing, the combined masses of the products equal the combined masses of the reactants.

3.25 g + 3.32 g = 6.57 g  

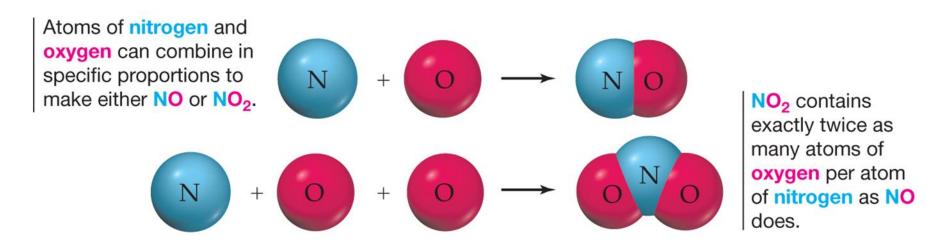
$$Hg(NO_3)_2(aq) + 2KI(aq) \longrightarrow HgI_2(s) + 2KNO_3(aq)$$
  
4.55 g + 2.02 g = 6.57 g

# Conservation of Mass and the Law of Definite Proportions

Law of Definite Proportions: Different samples of a pure chemical substance always contain the same proportion of elements by mass.

By mass, water is

88.8% oxygen


11.2% hydrogen

Law of Multiple Proportions: Elements can combine in different ways to form different substances, whose mass ratios are small wholenumber multiples of each other.

Nitrogen monoxide: 7 grams nitrogen per 8 grams oxygen (NO)

Nitrogen dioxide: 7 grams nitrogen per 16 grams oxygen (NO<sub>2</sub>)

Law of Multiple Proportions: Elements can combine in different ways to form different substances, whose mass ratios are small wholenumber multiples of each other. (bc combining discrete atoms not something like sugar and sand)



- Elements are made up of tiny particles called atoms.
- Each <u>element</u> is characterized by the <u>mass of its</u>
   atoms. Atoms of the same element have the same
   mass, but atoms of different elements have
   different masses.

- The chemical combination of <u>elements</u> to make different chemical <u>compounds</u> occurs when atoms join in <u>small whole-number ratios</u>.
   (NO vs NO<sub>2</sub>) (H<sub>2</sub>O<sub>2</sub> vs H<sub>2</sub>O) (bc not fractions of atoms & atomic mass of element does not change)
   | F sect 9/6 Friday
- Chemical reactions only rearrange how atoms are combined in chemical compounds; the atoms themselves don't change.

#### **Atomic Structure: Protons and Neutrons**

| TABLE 2.4 A Comparison of Subatomic Particles |                            |                           |                           |    |  |  |  |  |  |  |  |
|-----------------------------------------------|----------------------------|---------------------------|---------------------------|----|--|--|--|--|--|--|--|
|                                               | 1                          | Charge                    |                           |    |  |  |  |  |  |  |  |
| Particle                                      | Grams                      | u*                        | Coulombs                  | e  |  |  |  |  |  |  |  |
| Electron                                      | $9.109382\times10^{-28}$   | $5.485799 \times 10^{-4}$ | $-1.602176\times10^{-19}$ | -1 |  |  |  |  |  |  |  |
| Proton                                        | $1.672622 \times 10^{-24}$ | 1.007 276                 | $+1.602176\times10^{-19}$ | +1 |  |  |  |  |  |  |  |
| Neutron                                       | $1.674927\times10^{-24}$   | 1.008 665                 | 0                         | 0  |  |  |  |  |  |  |  |

<sup>\*</sup>The unified atomic mass unit (u) is defined in Section 2.9.

## The mass of the atom is primarily in the nucleus.

#### **Atomic Structure: Protons and Neutrons**

| TABLE 2.4 | A Comparison of Subatomic Particles |                           |                           |    |  |  |  |  |  |  |  |
|-----------|-------------------------------------|---------------------------|---------------------------|----|--|--|--|--|--|--|--|
|           | N                                   | Mass                      | Charge                    |    |  |  |  |  |  |  |  |
| Particle  | Grams                               | u*                        | Coulombs                  | e  |  |  |  |  |  |  |  |
| Electron  | $9.109382\times 10^{-28}$           | $5.485799 \times 10^{-4}$ | $-1.602176\times10^{-19}$ | -1 |  |  |  |  |  |  |  |
| Proton    | $1.672622 \times 10^{-24}$          | 1.007 276                 | $+1.602176\times10^{-19}$ | +1 |  |  |  |  |  |  |  |
| Neutron   | $1.674927\times10^{-24}$            | 1.008 665                 | 0                         | 0  |  |  |  |  |  |  |  |

<sup>\*</sup>The unified atomic mass unit (u) is defined in Section 2.9.

Charge of a Proton is the same size but opposite in sign to the charge of an electron.

#### **Atomic Numbers**

Atomic Number (Z): Number of protons in an atom's nucleus, equivalent to the number of electrons around an atom's nucleus

Mass Number (A): The sum of the number of protons and the number of neutrons in an atom's nucleus

**Isotope**: Atoms with identical atomic numbers but different mass numbers (same # proton, different # neutrons)

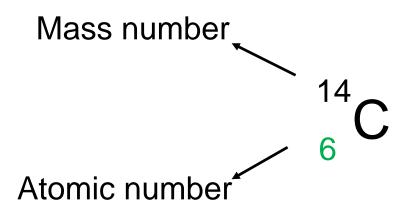
#### **Atomic Numbers**

#### Carbon-12:

Mass number 12

Atomic number

A E Z


Element symbol (not periodic table)

6 protons

6 electrons

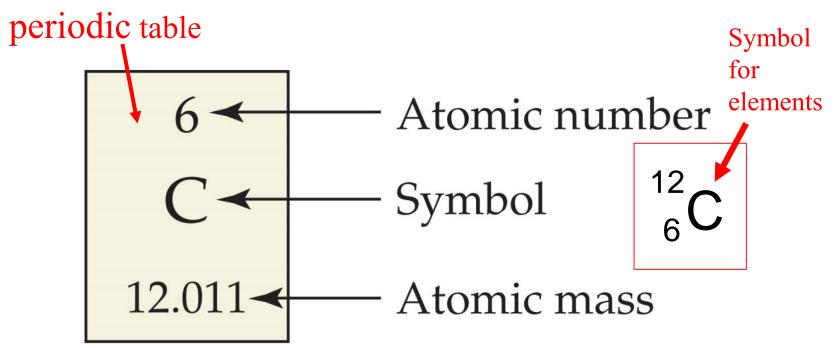
6 neutrons

#### Carbon-14:



isotopes

6 protons


6 electrons

8 neutrons

#### **Atomic Masses**

The mass of 1 atom of carbon-12 is defined to be 12 amu.

Atomic Mass: The weighted average of the isotopic masses of the element's naturally occurring isotopes



#### HW (do 1 & 3)

How many protons and neutrons are in the nucleus of each of the following atoms?

- In a neutral atom of each element, how many electrons are present? (look in periodic table)
- (neutral atoms have the same # of protons as electrons)
  - 1. <sup>79</sup>Br
  - 2. 81Br
  - 3. <sup>239</sup>Pu
  - 4. <sup>133</sup>Cs

#### HW

- How many protons and neutrons are in the nucleus of each of the following atoms?
  - In a neutral atom of each element, how many electrons are present ?

```
1. <sup>79</sup>Br 35 p, 44 n, 35 e
```

#### Why is the atomic mass of the element carbon 12.01 amu?

Carbon-12: 98.89% natural abundance12 amu (infinite sig fig)

(98.89 / 100 = 0.9889)

Carbon-13: 1.11% natural abundance 13.0034 amu

(1.11 / 100 = 0.0111)

End 9/9 M D section

Mass of carbon = (12 amu)(0.9889) + (13.0034 amu)(0.0111)

= 11.87 amu + 0.144 amu

= 12.01 amu

HW Calculation of Average Atomic Mass from isotopic mass and % composition example: One isotope of gallium has atomic mass of 68.926 amu (atomic mass A) & makes up 60.3 % of natural gallium. Ga also has another isotope with atomic mass of 70.925 (atomic mass B) at 39.7% What is the average atomic mass of gallium based on the isotopic masses? (next slide has answer)

HW Calculation of Average Atomic Mass from isotopic mass and % composition example: One isotope of gallium has atomic mass of 68.926 amu (atomic mass A) & makes up 60.3 % of natural gallium. Ga also has another isotope with atomic mass of 70.925 (atomic mass B) at 39.7% What is the average atomic mass of gallium based on the isotopic masses?

average atomic mass =

```
isotope A isotope B [(fraction)(atomic mass)] + [(fraction)(atomic mass)] (0.603) (68.926) + (0.397) (70.925) = 69.7 41.562378 + 28.157225
```

### **Atomic Masses and the Mole**

Avogadro's Number ( $N_A$ ): One mole of any substance contains  $6.022 \times 10^{23}$  formula units.

Molar Mass: The mass in grams of one mole of any element. It is numerically equivalent to its atomic mass.

1 mole of <sup>12</sup>C weighs 12 grams

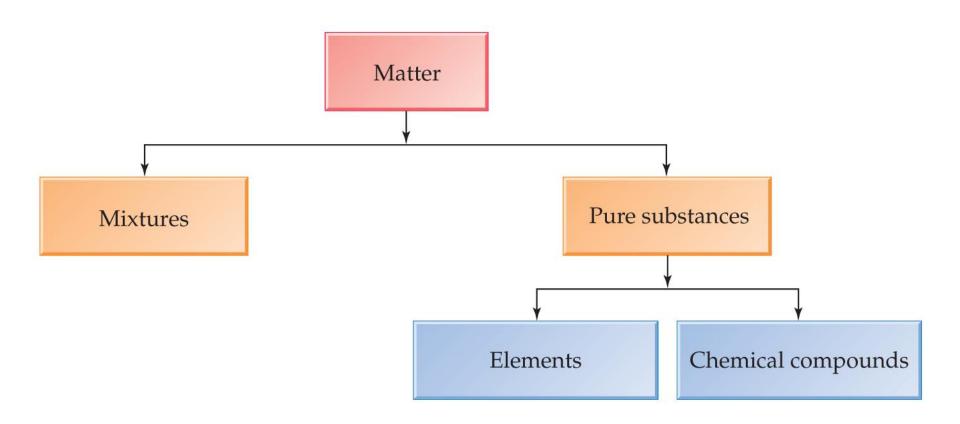
1 mole of <sup>12</sup>C has 6.022 x 10<sup>23</sup> atoms of C

1 atom of <sup>12</sup>C weighs 12 amu

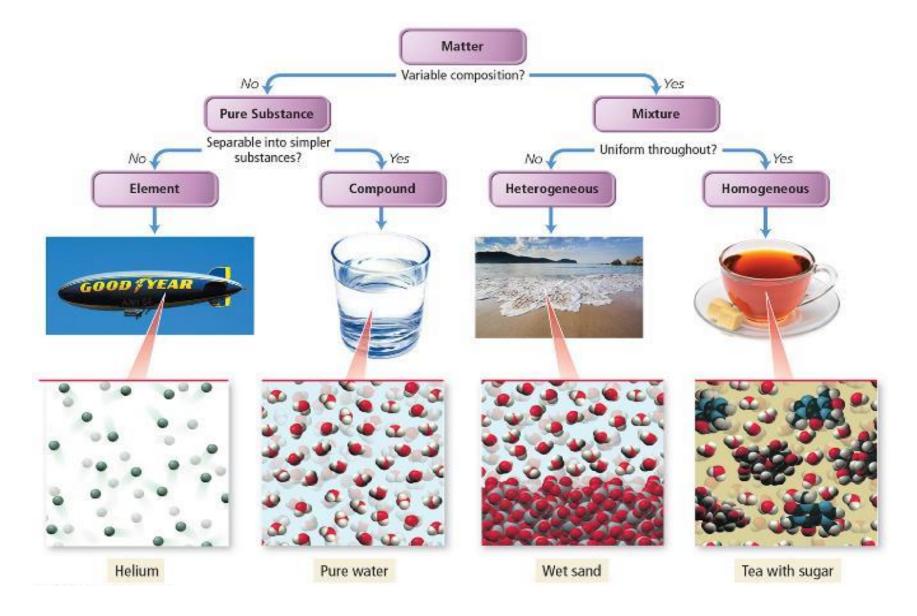
End 9/9M – sect F



#### Using Mole Definition:


HW: For the element calcium (Ca)

- a) What is the atomic mass of calcium? \_\_\_\_\_ amu
- b) What is the molar mass of calcium? \_\_\_\_\_ grams
- c) How many atoms are in one mole of calcium? atoms
- d) How many moles are in 90.3 grams of calcium?


End 9/9 G section

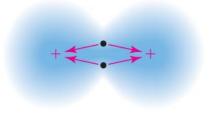
e) How many atoms are in 90.3 grams of calcium?

## **Mixtures and Chemical Compounds**



# **Classification of Matter (examples)**




### **Molecules and Covalent Bonds**

End 9/11 W D section

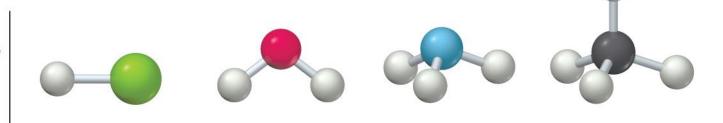
Covalent Bond: Results when two atoms share several (usually two) electrons. Typically a nonmetal bonded to a nonmetal. (friendly & cooperative – hold hands)



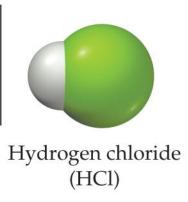




Similarly, two atoms are joined together when both nuclei (+) tug on the same electrons (dots).


#### **Molecules and Covalent Bonds**

**Covalent Bond**: Results when two atoms share several (usually two) electrons. Typically a nonmetal bonded to a nonmetal.


**Molecule**: The unit of matter that results when two or more atoms are joined by covalent bonds.

### **Molecules and Covalent Bonds**

Ball-and-stick models show atoms (spheres) joined together by covalent bonds (sticks).



Space-filling models portray the overall molecular shape but don't explicitly show covalent bonds.





Water (H<sub>2</sub>O)



Ammonia (NH<sub>3</sub>)



Methane (CH<sub>4</sub>)

#### **lons and Ionic Bonds**

**lonic Bond**: A transfer of one or more electrons from one atom to another. A strong electrical attraction between charged particles. Typically a metal bonded to a nonmetal. (selfish atoms – one atom gets all electrons, one atom loses all electrons)

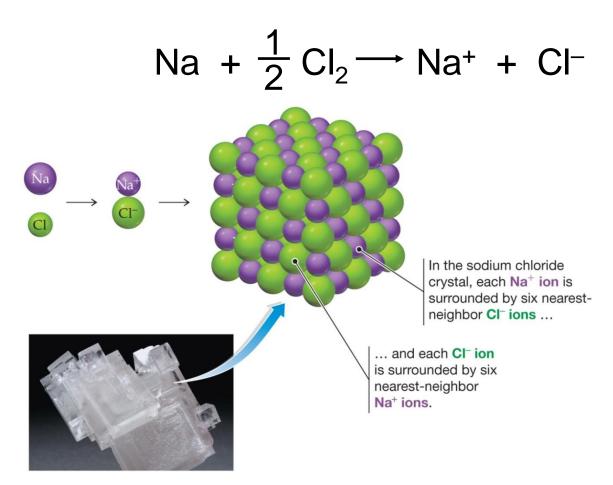
**Ion**: A charged particle

**Cation**: A positively charged particle. Metals tend to form cations.

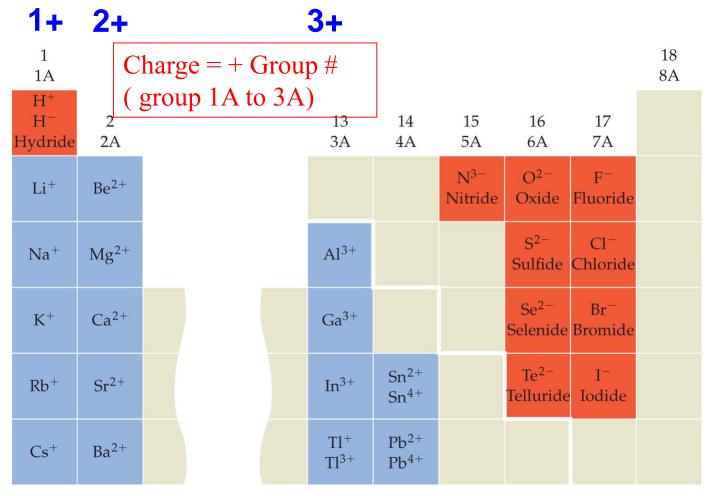
**Anion**: A negatively charged particle. Nonmetals tend to form anions.

## ionic vs covalent

Ionic Compounds – metal with nonmetal combine two elements on opposite side of periodic table ex: NaCl, K<sub>2</sub>S


Covalent Compounds – nonmetal with nonmetal, combine two elements close together on periodic table ex: CO<sub>2</sub>, PCl<sub>3</sub>

HW: Which of the following are ionic compounds and which are covalent compounds? (H is weird & is a nonmetal, H acts as if in group 7A)


- a)  $K_2 S$
- b) SO<sub>2</sub>
- c)  $P_2O_5$
- d) CH<sub>4</sub>
- e) Cu O
- f) H<sub>2</sub>O

#### **lons and Ionic Bonds**

In the formation of sodium chloride, one electron is transferred from the sodium atom to the chlorine atom.



## Cation Charges for Typical Main-Group Ions



End class F section 9/11 Wed

## **Cation Charges for Typical Main-Group Ions**

| 1<br>1A                                     |                  | narge = gro |     |                                     |                                      | 3–                         | 2–                            | 1–                          | 18<br>8A |
|---------------------------------------------|------------------|-------------|-----|-------------------------------------|--------------------------------------|----------------------------|-------------------------------|-----------------------------|----------|
| H <sup>+</sup><br>H <sup>-</sup><br>Hydride |                  | or group 5. | A t | o 7A<br>3A                          | )<br>14<br>4A                        | 15<br>5A                   | 16<br>6A                      | 17<br>7A                    |          |
| Li <sup>+</sup>                             | Be <sup>2+</sup> |             |     |                                     |                                      | N <sup>3-</sup><br>Nitride | O <sup>2-</sup><br>Oxide      | F <sup>-</sup><br>Fluoride  |          |
| Na <sup>+</sup>                             | Mg <sup>2+</sup> |             |     | Al <sup>3+</sup>                    |                                      |                            | S <sup>2-</sup><br>Sulfide    | Cl <sup>–</sup><br>Chloride |          |
| K <sup>+</sup>                              | Ca <sup>2+</sup> |             |     | Ga <sup>3+</sup>                    |                                      |                            | Se <sup>2–</sup><br>Selenide  | Br <sup>-</sup><br>Bromide  |          |
| Rb <sup>+</sup>                             | Sr <sup>2+</sup> |             |     | In <sup>3+</sup>                    | Sn <sup>2+</sup><br>Sn <sup>4+</sup> |                            | Te <sup>2–</sup><br>Telluride | I <sup>-</sup><br>Iodide    |          |
| Cs <sup>+</sup>                             | Ba <sup>2+</sup> |             |     | Tl <sup>+</sup><br>Tl <sup>3+</sup> | Pb <sup>2+</sup><br>Pb <sup>4+</sup> |                            |                               |                             |          |

# HW: What is the charge on the ions formed from the following atoms?

| Na | _ group # | charge |
|----|-----------|--------|
| Ga | _ group # | charge |
| N  | _group #  | charge |
| I  | group#    | charge |
| As | group #   | charge |

**lonic Compound**: A neutral compound in which the total number of positive charges must equal the total number of negative charges. (metal element name + nonmetal element name – ending + ide)

# **Binary Ionic Compounds**

9/12 R D sect

| Sodium chloride<br>(Chlorine – ending + ide) | Na+              | CI-             | NaCl      |
|----------------------------------------------|------------------|-----------------|-----------|
| Magnesium oxide<br>(Oxygen – ending + ide)   | Mg <sup>2+</sup> | O <sup>2-</sup> | MgO       |
| Aluminum sulfide (sulfur – ending + ide)     | Al <sup>3+</sup> | S <sup>2-</sup> | $Al_2S_3$ |

**Binary Ionic Compounds** 

by inspection

Sodium chloride:

Na<sup>+</sup>

CI-

**NaCl** 

Magnesium oxide:

 $Mg^{2+}$ 

 $O^{2-}$ 

MgO

Aluminum sulfide:

Al<sub>2</sub>S<sub>3</sub>

zero = (# Al) (charge Al) + (# S) (charge S)

HW: Write out the formula for the binary ionic compound formed from the following elements. Show work. (a) what are likely charges on all atoms (b) write out correct ionic compound formula including showing the subscript for how many of each ion you need for a neutral formula (zero charge formula) (c) give name Show work.

Ca & Cl

Rb & Se

Ga & O

9/11 W - G section

Some transition metals form more than one cation.

| 3<br>3B          | 4<br>4B          | 5<br>5B         | 6<br>6B                              |                  | 8                                    | 9<br>— 8B —      | 10               | 11<br>1 B                           | 12<br>2B                                          |  |
|------------------|------------------|-----------------|--------------------------------------|------------------|--------------------------------------|------------------|------------------|-------------------------------------|---------------------------------------------------|--|
| Sc <sup>3+</sup> | Ti <sup>3+</sup> | $V^{2+} V^{3+}$ | Cr <sup>2+</sup><br>Cr <sup>3+</sup> | Mn <sup>2+</sup> | Fe <sup>2+</sup><br>Fe <sup>3+</sup> | Co <sup>2+</sup> | Ni <sup>2+</sup> | Cu <sup>+</sup><br>Cu <sup>2+</sup> | Zn <sup>2+</sup>                                  |  |
| Y <sup>3+</sup>  |                  |                 |                                      |                  | Ru <sup>3+</sup>                     | Rh <sup>3+</sup> | Pd <sup>2+</sup> | Ag <sup>+</sup>                     | Cd <sup>2+</sup>                                  |  |
|                  |                  |                 |                                      |                  |                                      |                  |                  |                                     | Hg <sup>2+</sup> (Hg <sub>2</sub> ) <sup>2+</sup> |  |

Use Roman numerals in parentheses to indicate the charge on metals that form more than one kind of cation. [for transition metal & main gp (Sn, Pb, Tl)]

## **Binary Ionic Compounds**

Iron(III) oxide:  $Fe_3^{-1}$   $O^{2-}$   $Fe_2O_3$ 

Tin(II) chloride: Sn<sup>2+</sup> Cl<sup>-</sup> SnCl<sub>2</sub>

Lead(II) fluoride: Pb<sup>2+</sup> F<sup>-</sup> PbF<sub>2</sub>

## **Binary Molecular Compounds**

**TABLE 2.6** Numerical Prefixes for Naming Compounds

| Prefix | Meaning |
|--------|---------|
| mono-  | 1       |
| di-    | 2       |
| tri-   | 3       |
| tetra- | 4       |
| penta- | 5       |
| hexa-  | 6       |
| hepta- | 7       |
| octa-  | 8       |
| nona-  | 9       |
| deca-  | 10      |

syllabus to memorize table from p. 65

Because nonmetals often combine with one another in different proportions to form different compounds, numerical prefixes are usually included in the names of binary molecular compounds. (covalent molecules)

 $N_2F_4$ 

The prefix is added to the front of each name to indicate the number of each atom.

Dinitrogen tetrafluoride

9/13F F section

## **Binary Molecular Compounds**

Whenever the prefix ends in a or o and the element name begins with a vowel, drop the a or o in the prefix.

N<sub>2</sub>O<sub>4</sub> Dinitrogen tetroxide

Whenever the prefix for the **first** element is *mono*-, drop it.

CO<sub>2</sub> Carbon dioxide

CO Carbon monoxide

| Formula                         | Name                                  | Formula                                      | Name               |  |  |  |
|---------------------------------|---------------------------------------|----------------------------------------------|--------------------|--|--|--|
| Cation                          |                                       | Singly charged anions (continued)            |                    |  |  |  |
| NH <sub>4</sub> <sup>+</sup>    | Ammonium ⊁                            | NO <sub>2</sub>                              | Nitrite            |  |  |  |
|                                 |                                       | NO <sub>3</sub>                              | Nitrate *          |  |  |  |
| ingly charged anio              | -1-                                   | Doubly charged an                            | ions               |  |  |  |
| CH <sub>3</sub> CO <sub>2</sub> | Acetate *                             | CO <sub>3</sub> <sup>2-</sup>                | Carbonate *        |  |  |  |
| N <sup>-</sup>                  | Cyanide                               | CrO <sub>4</sub> <sup>2-</sup>               | Chromate           |  |  |  |
| clo-                            | Hypochlorite                          | $\operatorname{Cr}_2\operatorname{O}_7^{2-}$ | Dichromate         |  |  |  |
| $10_2^-$                        | Chlorite                              | $O_2^{2-}$                                   | Peroxide           |  |  |  |
| lO <sub>3</sub>                 | Chlorate                              | $HPO_4^{2-}$                                 | Hydrogen phosphate |  |  |  |
| 21O <sub>4</sub>                | Perchlorate                           | 1509000 - 5000 0 M                           | Sulfite            |  |  |  |
| $I_2PO_4^-$                     | Dihydrogen phosphate                  | SO <sub>3</sub> <sup>2-</sup>                |                    |  |  |  |
| ICO <sub>3</sub>                | Hydrogen carbonate (or bicarbonate) ⊁ | SO <sub>4</sub> <sup>2-</sup>                | Sulfate *          |  |  |  |
| ISO <sub>4</sub>                | Hydrogen sulfate (or bisulfate)       | $S_2O_3^{2-}$                                | Thiosulfate        |  |  |  |
| H <sup>-</sup>                  | Hydroxide *                           | Triply charged ani                           | on                 |  |  |  |
| nO <sub>4</sub>                 | Permanganate                          | PO <sub>4</sub> <sup>3-</sup>                | Phosphate 🛠        |  |  |  |

syllabus to memorize list p. 63 (for quiz & test 1 – memorize name, formula & charge for those with \*)

## **Polyatomic Ionic Compounds**

Sodium hydroxide:

Na+

OH-

NaOH

Magnesium carbonate:

 $Mg^{2+}$ 

CO<sub>3</sub><sup>2-</sup>

 $MgCO_3$ 

Sodium carbonate:

Na+

CO<sub>3</sub><sup>2-</sup>

Na<sub>2</sub>CO<sub>3</sub>

Iron(II) hydroxide:

Fe<sup>2+</sup>

OH-

Fe(OH)<sub>2</sub>

# In summary for naming:

- <u>lonic</u> metal nonmetal (if either is a polyatomic ion, use the name of the polyatomic ion instead of the name of the element) give element name for metal [If variable charge (most transition metals & Sn, Pb & Tl) metal use charge in parenthesis] give element name for nonmetal ending + ide do <u>NOT</u> use number prefixes
- Covalent nonmetal-1 nonmetal-2 (same as ionic but use # prefix) give element name for nonmetal-1 End 9/13 G sect give element name for nonmetal-2 ending + ide use number prefixes (mono, di, tri, tetra, penta, hexa, hepta, octa, etc)

# Ionic vs Covalent Naming

- Ca Cl<sub>2</sub> vs P Cl<sub>3</sub>
- lonic vs covalent
- (same naming but covalent use # prefix)
- calcium chlorine ine + ide
   calcium chloride
- phosphorus chlorine ine + ide (use # prefix)
   phosphorus trichloride

## **HW:** Naming Ionic Binary Compounds

- 1. Give the systematic name for each of the following compounds:
  - a. CoBr<sub>2</sub>
  - b. CaCl<sub>2</sub>
- 2. Given the following systematic names, write the formula for each compound:
  - a. Chromium(III) chloride
  - b. Gallium iodide

## **HW:** Naming Ionic Binary Compounds

- 1. Give the systematic name for each of the following compounds:
  - a. CoBr<sub>2</sub> cobalt (II) bromide
  - b. CaCl<sub>2</sub> calcium chloride
- 2. Given the following systematic names, write the formula for each compound:
  - a. Chromium(III) chloride Cr Cl<sub>3</sub>
  - b. Gallium iodide Gal<sub>3</sub>

# HW: Naming Compounds Containing Polyatomic Ions

- 1. Give the systematic name for each of the following compounds:
  - a. Na<sub>2</sub>SO<sub>4</sub>
  - b.  $Mn(OH)_2$
- 2. Given the following systematic names, write the formula for each compound: (formula must equal zero charge overall)
  - a. Sodium carbonate
  - b. Sodium phosphate

# HW: Naming Compounds Containing Polyatomic Ions

- 1. Give the systematic name for each of the following compounds:
  - a. Na<sub>2</sub>SO<sub>4</sub> sodium sulfate
  - b. Mn(OH)<sub>2</sub> manganese (II) hydroxide
- Given the following systematic names, write the formula for each compound: (formula musts equal zero charge overall)
  - a. Sodium carbonate Na<sub>2</sub> CO<sub>3</sub>
  - b. Sodium phosphate Na<sub>3</sub> PO<sub>4</sub>

## **HW**: Naming Covalent Binary Compounds

- 1. Name each of the following compounds:
  - a. PCl<sub>5</sub>
  - b. PCl<sub>3</sub>
  - c.  $SO_2$
- 2. From the following systematic names, write the formula for each compound:
  - a. Sulfur hexafluoride
  - b. Sulfur trioxide

## Naming Covalent Binary Compounds

- 1. Name each of the following compounds:
  - a. PCl<sub>5</sub> phosphorus pentachloride
  - b. PCl<sub>3</sub> phosphorus trichloride
  - c. SO<sub>2</sub> sulfur dioxide
- 2. From the following systematic names, write the formula for each compound:
  - a. Sulfur hexafluoride SF<sub>6</sub>
  - b. Sulfur trioxide SO<sub>3</sub>