

Lecture Presentation

Chapter 3

Mass

Relationships in Chemical Reactions

> HW: $3.3,3.5,3.7,3.9,3.10$ $3.11,3.13,3.15,3.17,3.23$ $3.27,3.30,3.38,3.42,3.54$ $3.60,3.70,3.84,3.106,3.114$

John E. McMurry Robert C. Fay

Representing Chemistry on Different Levels

$$
2 \mathrm{H}_{2}(g)+\mathrm{O}_{2}(g) \longrightarrow 2 \mathrm{H}_{2} \mathrm{O}(\Lambda)
$$

Microscopic:
2 molecules of hydrogen gas react with 1 molecule of oxygen gas to yield 2 molecules of liquid water.

Representing Chemistry on Different Levels

$$
2 \mathrm{H}_{2}(g)+\mathrm{O}_{2}(g) \longrightarrow 2 \mathrm{H}_{2} \mathrm{O}(\Lambda)
$$

Microscopic:
2 molecules of hydrogen gas react with 1 molecule of oxygen gas to yield 2 molecules of liquid water.

Macroscopic: 2 moles of hydrogen gas react with 1 mole of oxygen gas to yield 2 moles of liquid water. (lab scale)

Need to Know: elements that exist in nature as diatomics (memorize list)

HON + halogens

Hydrogen $\left(\mathrm{H}_{2}\right)$
Oxygen (O_{2})
Nitrogen $\left(\mathrm{N}_{2}\right)$
Halogens $\left(\mathrm{F}_{2}, \mathrm{Cl}_{2}, \mathrm{Br}_{2}, \mathrm{I}_{2}\right)$

Balancing Chemical Equations

A balanced chemical equation follows the law of conservation of mass.

In a balanced chemical equation, the numbers and kinds of atoms on both sides of the reaction arrow are identical.

$$
\begin{array}{ll}
2 \mathrm{Na}(s)+\mathrm{Cl}_{2}(g) & 2 \mathrm{NaCl}(s) \\
\text { left side: } & \text { right side: } \\
\text { reactant } & \text { product } \\
& \\
2 \mathrm{Na} & 2 \mathrm{Na} \\
2 \mathrm{Cl} & 2 \mathrm{Cl}
\end{array}
$$

Balancing Chemical Equations

$\mathrm{Hg}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq})+2 \mathrm{KI}(\mathrm{aq}) \longrightarrow \mathrm{Hgl}_{2}(\mathrm{~s})+2 \mathrm{KNO}_{3}(\mathrm{aq})$

left side:
right side:
1 Hg
2 N
6 O
2 K
2 I

1 Hg
21
2 K
2 N
60

How to Balance Chemical Equations

1. Write the unbalanced equation using the correct chemical formula for each reactant and product.

$$
\mathrm{H}_{2}(g)+\mathrm{O}_{2}(g) \longrightarrow \mathrm{H}_{2} \mathrm{O}(\Lambda)
$$

2. Change coefficients-the numbers placed before formulas to indicate how many formula units of each substance are required to balance the equation. (leave the sutioscripts alone - otherwise change ID of molecule)

$$
2 \mathrm{H}_{2}(g)+\mathrm{O}_{2}(g) \longrightarrow 2 \mathrm{H}_{2} \mathrm{O}(\Lambda)
$$

Balancing Chemical Equations

3. Reduce the coefficients to their smallest wholenumber values, if necessary, by dividing them all by a common divisor.

$$
4 \mathrm{H}_{2}(g)+2 \mathrm{O}_{2}(g) \longrightarrow 4 \mathrm{H}_{2} \mathrm{O}(\Lambda)
$$

divide all coefficients by 2 (or any common divisor

$$
\stackrel{2 \mathrm{H}_{2}(g)+}{\stackrel{\mathrm{O}_{2}(g)}{ } \longrightarrow 2 \mathrm{H}_{2} \mathrm{O}(\Omega)}
$$

Balancing Chemical Equations

4. Check your answer by making sure that the numbers and kinds of atoms are the same on both sides of the equation.

$$
2 \mathrm{H}_{2}(g)+\mathrm{O}_{2}(g) \longrightarrow 2 \mathrm{H}_{2} \mathrm{O}(\Lambda)
$$

left side: right side:
$\begin{array}{ll}4 \mathrm{H} & 4 \mathrm{H} \\ 2 \mathrm{O} & 2 \mathrm{O}\end{array}$

$$
\begin{aligned}
& \text { note: }(\mathrm{g})=\text { gas } \quad(\mathrm{l})=\operatorname{liquid} \quad(\mathrm{s})=\text { solid } \\
& (\mathrm{aq})=\text { aqueous or dissolved in water }
\end{aligned}
$$

Likely balancing chemical equation question on quiz or exam. (fill in blank or MC)
a. Balance the following by filling in the blanks
$-\mathrm{NH}_{3}+5 \mathrm{O}_{2} \rightarrow 4 \mathrm{NO}+\ldots \mathrm{H}_{2} \mathrm{O}$
b. Write down the number of each type of atom on both the reactant and product side of the reaction.

HW: Balancing reaction. Do only (a).

- Balance the following reaction. Give \# of each type of atom in both reactants \& products. (keep polyatomic ions together) (start with polyatomics, end with water)
a) $\mathrm{AgNO}_{3}(a q)+\mathrm{H}_{2} \mathrm{SO}_{4}(a q) \rightarrow \mathrm{Ag}_{2} \mathrm{SO}_{4}(s)+\mathrm{HNO}_{3}(a q)$
b) $\mathrm{Ca}(\mathrm{OH})_{2}(a q)+\mathrm{H}_{3} \mathrm{PO}_{4}(a q) \rightarrow \mathrm{H}_{2} \mathrm{O}(l)+\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}(s)$

HW: Balancing chemical reactions.

- For balanced RXN, give \# of each type of atom on reactant \& product. (keep polyatomic ions together) [do (b) on own]

$$
\text { a) } \begin{aligned}
& \mathrm{AgNO}_{3}(a q)+\mathrm{H}_{2} \mathrm{SO}_{4}(a q) \rightarrow \mathrm{Ag}_{2} \mathrm{SO}_{4}(s)+\mathrm{HNO}_{3}(a q) \\
& 2 \mathrm{AgNO}_{3}(a q)+\mathrm{H}_{2} \mathrm{SO}_{4}(a q) \rightarrow \mathrm{Ag}_{2} \mathrm{SO}_{4}(s)+2 \mathrm{HNO}_{3}(a q)
\end{aligned}
$$

b) $\mathrm{Ca}(\mathrm{OH})_{2}(a q)+\mathrm{H}_{3} \mathrm{PO}_{4}(a q) \rightarrow \mathrm{H}_{2} \mathrm{O}(l)+\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}(s)$

$$
3 \mathrm{Ca}(\mathrm{OH})_{2}(a q)+2 \mathrm{H}_{3} \mathrm{PO}_{4}(a q) \rightarrow 6 \mathrm{H}_{2} \mathrm{O}(l)+\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}(s)
$$

Chemical Arithmetic: Stoichiometry

Molecular Mass: Sum of atomic masses of all atoms in a molecule (for covalent molecule) (some texts use term molecular weight MW or MM)

Formula Mass: Sum of atomic masses of all atoms in a formula unit of any compound, molecular or ionic (for any compound) (some texts use term formula weight FW or FM)

```
HCI: 1.0 amu + 35.5 amu = 36.5 amu
H
Cl
```

$\mathbf{C}_{2} \mathbf{H}_{4}: \underset{\mathrm{C}}{\underset{\mathrm{C}}{2(12.0 \mathrm{amu})}+\underset{\mathrm{H}}{(1.0 \mathrm{amu})}=28.0 \mathrm{amu}}$

Chemical Arithmetic: Stoichiometry

$$
\begin{array}{ll}
\text { CI } & \text { one atom }=35.5 \mathrm{amu} \\
1 \text { mole }=35.5 \mathrm{~g} \mathrm{molar} \text { mass } \\
6.022 \times 10^{23} \text { atoms }=35.5 \mathrm{~g}
\end{array}
$$

HCI. One formula $=36.5 \mathrm{amu}$
1 mole $=36.5 \mathrm{~g}$ molar mass
6.022×10^{23} molecules $=36.5 \mathrm{~g}$
$\begin{aligned} & \mathbf{C}_{2} \mathbf{H}_{4}: \text { one molecule }=28.0 \mathrm{amu} \\ & 1 \text { mole }=28.0 \mathrm{~g} \text { molar mass } \\ & 6.022 \times 10^{23} \text { molecules }=28.0 \mathrm{~g}\end{aligned}$

Chemical Arithmetic: Stoichiometry

Stoichiometry: The chemical arithmetic needed for mole to mass conversions (convert amount of one chemical to amount of another chemical - using conversion factor)

$$
a \mathrm{~A}+b \mathrm{~B} \longrightarrow c \mathrm{C}+d \mathrm{D}
$$

Chemical Arithmetic: Stoichiometry

$2 \mathrm{NaOH}(a q)+\mathrm{Cl}_{2}(g) \longrightarrow \mathrm{NaOCl}(a q)+\mathrm{NaCl}(a q)+\mathrm{H}_{2} \mathrm{O}(\Omega)$
How many grams of NaOH are needed to react with $25.0 \mathrm{~g} \mathrm{Cl}_{2}$?

using balanced chemical equation as conversion factor

Grams of
Cl_{2}
Moles of
Cl_{2}
\qquad Moles of NaOH

Grams of NaOH

Chemical Arithmetic: Stoichiometry

$2 \mathrm{NaOH}(a q)+\mathrm{Cl}_{2}(g) \longrightarrow \mathrm{NaOCl}(a q)+\mathrm{NaCl}(a q)+\mathrm{H}_{2} \mathrm{O}(\Omega)$
FM $40.0 \mathrm{~g} / \mathrm{mol} \quad$ FM 70.9g/mol

End 9/19 R D section

How many grams of NaOH are needed to react with $25.0 \mathrm{~g} \mathrm{Cl}_{2}$? 2 mole $\mathrm{NaOH}=1 \mathrm{~mole} \mathrm{Cl}_{2}$

$$
\begin{aligned}
& 25.0 \mathrm{~g} \mathrm{Cl}_{2} \times \frac{1 \mathrm{~mol} \mathrm{Cl}_{2}}{70.9 \mathrm{~g} \mathrm{Cl}_{2}} \times \frac{2 \mathrm{~mol} \mathrm{NaOH}}{1 \mathrm{~mol} \mathrm{Cl}_{2}} \times \frac{40.0 \mathrm{~g} \mathrm{NaOH}}{1 \mathrm{~mol} \mathrm{NaOH}} \\
& =28.2 \mathrm{~g} \mathrm{NaOH}
\end{aligned}
$$

HW: If I want to make 15.0 g iron, how many grams of iron (III) oxide is needed?
$\mathrm{Fe}_{2} \mathrm{O}_{3}(s)+2 \mathrm{Al}(s) \rightarrow 2 \mathrm{Fe}(l)+\mathrm{Al}_{2} \mathrm{O}_{3}(s)$
FM $159.7 \mathrm{~g} / \mathrm{mol} \quad$ FM $55.9 \mathrm{~g} / \mathrm{mol}$
conversion factors:

1 mole $\mathrm{Fe}=55.9 \mathrm{~g} \mathrm{Fe}$
1 mole $\mathrm{Fe}_{2} \mathrm{O}_{3}=159.7 \mathrm{~g} \mathrm{Fe}_{2} \mathrm{O}_{3}$
1 mole $\mathrm{Fe}_{2} \mathrm{O}_{3}=2$ moles Fe

HW: If I want to make 15.0 g iron, how many grams of iron (III) oxide is needed ?
$\mathrm{Fe}_{2} \mathrm{O}_{3}(s)+2 \mathrm{Al}(s) \rightarrow 2 \mathrm{Fe}(l)+\mathrm{Al}_{2} \mathrm{O}_{3}(s)$

Mass of iron (III) oxide $=\mathbf{2 1 . 5} \mathbf{g}$

> | End F section |
| :--- |
| 9/20 Friday |

Yields of Chemical Reactions

Actual Yield: The amount actually formed in a reaction
Theoretical Yield: The amount predicted by calculations

Percent Yield $=\frac{\text { Actual yield of product }}{\text { Theoretical yield of product }} \times 100 \%$

Experimental yield is almost never the same as theoretically expected yield.

End F section 9/23 M

Examples: calculating \% yield

A reaction should produce 23.2 grams of iron metal from the reactant amount. The reaction experimentally only yields 19.3 grams of iron metal. What is your percent yield?

End G section 9/20/19, 9/23M

$\%$ yield $=\left[\frac{19.3 \text { grams experimental yield }}{23.2 \text { grams theoretical yield }}\right] * 100=83.2 \%$

Reactions with Limiting Amounts of

Reactants

Limiting Reactant: The reactant that is present in limiting amount. The extent to which a chemical reaction takes place depends on the limiting reactant.

Excess Reactant: Any of the other reactants still present after using up all of the limiting reactant

How Many Cookies Can I Make?

- You can make cookies until you run out of one of the ingredients.
- Once this family runs out of sugar, they will stop making cookies (at least any cookies you would want to eat).

How Many Cookies Can I Make?

- In this example the sugar would be the limiting reactant, because it will limit the amount of cookies you can make.

Stoichiometric Calculations

2 bread slices +1 salami slices $\rightarrow 1$ salami sandwich
What is the theoretical yield of salami sandwiches from 4 bread slices and 3 salami slices ? Which is the limiting reagent?
(a) salami sandwiches (b) bread slices (c) salami slices (d) b \& c

4 bread $\times \frac{1 \text { sandwich }}{2 \text { bread }}=2$ sandwiches
3 salapmi $\times \frac{1 \text { sandwich }}{1 \text { salámi }}=3$ sandwiches

Stoichiometric Calculations

2 bread slices +1 salami slices $\rightarrow 1$ salami sandwich
What is the theoretical yield of salami sandwiches from 4 bread slices and 3 salami slices ? Which is the limiting reagent?
(a) salami sandwiches (b) bread slices (c) salami slices (d) b \& c

4 bread $\times \frac{1 \text { sandwich }}{2 \text { bread }}=2$ sandwiches $\begin{aligned} & \text { bread is Limiting } \\ & \text { Reagent }\end{aligned}$
3 salafmi $\times \frac{1 \text { sandwich }}{1 \text { salámi }}=3$ sandwiches
Theoretical Yield is 2 sandwiches.

Stoichiometric Calculations

$$
3 \mathrm{H}_{2}+\mathrm{N}_{2} \rightarrow 2 \mathrm{NH}_{3}
$$

What is the theoretical yield of NH_{3} in grams from 8.22 grams H_{2} and 31.5 g of N_{2} ? (NOT $8.22 \mathrm{~g} \mathrm{NH}_{3}$, NOT $31.5 \mathrm{~g} \mathrm{NH}_{3}$) Which is the limiting reagent? (NOT necessarily H_{2})
(a) NH_{3} (b) H_{2} (c) N_{2} (d) b \& c

Needed must have formula masses because chemical equation is in molar or number of molecule ratios

- FM of $\mathrm{NH}_{3}=14.01(\mathrm{~N})+3 * 1.01(\mathrm{H})=17.04 \mathrm{~g} \mathrm{NH}_{3} / \mathrm{mol} \mathrm{NH}_{3}$
- FM of $\mathrm{H}_{2}=2^{*} 1.01(\mathrm{H})=2.02 \mathrm{~g} \mathrm{H}_{2} / \mathrm{mol} \mathrm{H}_{2}$
- FM of $\mathrm{N}_{2}=2^{*} 14.01(\mathrm{~N})=28.02 \mathrm{~g} \mathrm{~N}_{2} / \mathrm{mol} \mathrm{N}_{2}$

Stoichiometric Calculations $3 \mathrm{H}_{2}+\mathrm{N}_{2} \rightarrow 2 \mathrm{NH}_{3}$

(1) What is the theoretical yield of $\mathrm{NH}_{3}\left(17.04 \mathrm{~g} \mathrm{NH}_{3} / \mathrm{mol} \mathrm{NH}_{3}\right)$ in grams from 8.22 grams $\mathrm{H}_{2}\left(2.02 \mathrm{~g} \mathrm{H}_{2} / \mathrm{mol} \mathrm{H}_{2}\right)$ and 31.5 g of $\mathrm{N}_{2}\left(28.02 \mathrm{~g} \mathrm{~N} / \mathrm{mol}_{2}\right)$? (2) Which is the limiting reagent? (a) NH_{3} (b) H_{2} (c) N_{2} (d) b \& c
$8.22 \mathrm{~g} \mathscr{1}_{2} \times \underline{1 \mathrm{moíH} 2} \times \underline{2 \mathrm{motNH} 3} \times \underline{17.04 \mathrm{~g} \mathrm{NH} 3}=46.2 \mathrm{~g} \mathrm{NH}_{3}$ $2.02 \mathrm{gH} 2 \quad 3 \mathrm{mo} / \mathrm{H} 2 \quad 1 \mathrm{mg} / \mathrm{NH} 3$
$31.5 \mathrm{gH}_{2} \times 1 \mathrm{~mol}{ }^{\prime} \mathrm{N} 2 \times 2 \mathrm{motNH} 3 \times 17.04 \mathrm{~g} \mathrm{NH} 3=38.3 \mathrm{~g} \mathrm{NH}_{3}$ 28.02of N2 $1 \mathrm{mg}^{\prime} \mathrm{N} 21 \mathrm{mokNH} 3$

Stoichiometric Calculations $3 \mathrm{H}_{2}+\mathrm{N}_{2} \rightarrow 2 \mathrm{NH}_{3}$

(1) What is the theoretical yield of $\mathrm{NH}_{3}\left(17.04 \mathrm{~g} \mathrm{NH}_{3} / \mathrm{mol} \mathrm{NH}_{3}\right)$ in grams from 8.22 grams $\mathrm{H}_{2}\left(2.02 \mathrm{~g} \mathrm{H}_{2} / \mathrm{mol} \mathrm{H}_{2}\right)$ and 31.5 g of $\mathrm{N}_{2}\left(28.02 \mathrm{~g} \mathrm{~N}_{2} / \mathrm{mol}_{2}\right)$? (2) Which is the limiting reagent? (a) NH_{3} (b) H_{2} (c) N_{2} (d) b \& c

- Using $8.22 \mathrm{~g} \mathrm{H}_{2}$ gives $46.2 \mathrm{~g} \mathrm{NH}_{3}$
- Using $31.5 \mathrm{~g} \mathrm{~N}_{2}$ gives $38.3 \mathrm{~g} \mathrm{NH}_{3}$
- Which is limiting reagent? Not NH_{3} (product never limiting reagent)
- H_{2} or N_{2} (Which gives less products ?)
(2) Which is limiting reagent?
(c) N_{2}
(1) What is Theoretical Yield? $38.3 \mathrm{~g} \mathrm{NH}_{3}$

Reactions with Limiting Amounts of

Reactants

Lithium oxide is used aboard the space shuttle to remove water from the air supply according to the equation

$$
\begin{array}{cc}
\mathrm{Li}_{2} \mathrm{O}(s)+\mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \longrightarrow 2 \mathrm{LiOH}(s) \\
29.88 \mathrm{~g} / \mathrm{mol} \quad 18.02 \mathrm{~g} / \mathrm{mol} \quad 23.95 \mathrm{~g} / \mathrm{mol} \quad \mathrm{FM} \text { values }
\end{array}
$$

If 80.0 g of water is to be removed and 65.0 g of $\mathrm{Li}_{2} \mathrm{O}$ is available, which reactant is limiting? How many grams of excess reactant remain? How many grams of LiOH are produced? (theoretical yield of LiOH)

Reactions with Limiting Amounts of
Reactants

$$
\mathrm{Li}_{2} \mathrm{O}(s)+\mathrm{H}_{2} \mathrm{O}(g) \longrightarrow 2 \mathrm{LiOH}(s)
$$

Which reactant is limiting?
Amount of $\mathrm{H}_{2} \mathrm{O}$ that will react with $65.0 \mathrm{~g} \mathrm{Li}_{2} \mathrm{O}$:
$65.0 \mathrm{~g} \mathrm{Li}_{2} \mathrm{O} \times \frac{1 \mathrm{~mol} \mathrm{Li}_{2} \mathrm{O}}{29.9 \mathrm{~g} \mathrm{Li}_{2} \mathrm{O}} \times \frac{1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}{1 \mathrm{~mol} \mathrm{Li}_{2} \mathrm{O}}=2.17 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}$
Amount of $\mathrm{H}_{2} \mathrm{O}$ given:
$80.0 \mathrm{~g} \mathrm{H}_{2} \mathrm{O} \times \frac{1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}{18.0 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}}=4.44 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O} \quad \mathrm{Li}_{2} \mathrm{O}$ is limiting.

Reactions with Limiting Amounts of Reactants

$$
\mathrm{Li}_{2} \mathrm{O}(s)+\mathrm{H}_{2} \mathrm{O}(g) \longrightarrow 2 \mathrm{LiOH}(s)
$$

How many grams of excess $\mathrm{H}_{2} \mathrm{O}$ remain?
$2.17 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O} \times \frac{18.0 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}}{1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}=39.1 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}$ (consumed)

Reactions with Limiting Amounts of Reactants

$$
\mathrm{Li}_{2} \mathrm{O}(s)+\mathrm{H}_{2} \mathrm{O}(g) \longrightarrow 2 \mathrm{LiOH}(s)
$$

How many grams of LiOH are produced?

$$
2.17 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O} \times \frac{2 \mathrm{~mol} \mathrm{LiOH}}{1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}} \times \frac{23.9 \mathrm{~g} \mathrm{LiOH}}{1 \mathrm{~mol} \mathrm{LiOH}}=104 \mathrm{~g} \mathrm{LiOH}
$$

End 9/25 D section

Limiting Reagent HW:

Suppose $68.5 \mathrm{~kg} \mathrm{CO}(g)$ is reacted with 8.60 kg H_{2}. (a) Which is limiting reagent ? (b) What is the theoretical yield of methanol (in grams) ?

$$
2 \mathrm{H}_{2}(g)+\mathrm{CO}(g) \rightarrow \mathrm{CH}_{3} \mathrm{OH}(l)
$$

FM $2.02 \mathrm{~g} / \mathrm{mol} \quad 28.01 \mathrm{~g} / \mathrm{mol} \quad 32.05 \mathrm{~g} / \mathrm{mol}$

End F, G section 9/25/19 W
 End D section 9/26R

Solution (continued from last page)

Limiting Reagent is the H_{2}. The maximum amount of $\mathrm{CH}_{3} \mathrm{OH}$ that can be formed is 6.82 $\times 10^{4} \mathrm{~g}$ (theoretical yield)

Percent Composition and Empirical

Formulas

Percent Composition: gives the mass percent of each element in a compound.

Empirical Formula: gives the smallest whole-number (molar) ratios of the atoms in the compound.

Molecular Formula: gives the actual numbers of atoms in a compound (molecule). (can be the empirical formula or a multiple of the empirical formula)

Types of Chemical Formulas

- An empirical formula gives the relative number of atoms of each element in a compound. (just ratio of elements)
- A molecular formula gives the actual number of atoms of each element in the molecule of a compound. (ratio AND exactly how many of each atom in a molecule) (for molecular formulas $\mathrm{H}_{2} \mathrm{O}_{2} \quad \mathrm{~B}_{2} \mathrm{H}_{6} \quad \mathrm{CCl}_{4}$)
(a) For $\mathrm{H}_{2} \mathrm{O}_{2}$, the greatest common factor is 2 . The empirical formula is HO .
(b) For $\mathrm{B}_{2} \mathrm{H}_{6}$, the greatest common factor is 2 . The empirical formula is BH_{3}.
(c) For CCl_{4}, the only common factor is 1 , so the empirical formula and the molecular formula are identical.

Empirical Formula - gives lowest ratio of elements in a compound

- Molecular formula = (empirical formula) ${ }_{n}$
- $\mathrm{n}=$ integer ($1,2,3 . .$.)
- Example:

CH (empirical formula)
$(\mathrm{CH})_{6}=\mathrm{C}_{6} \mathrm{H}_{6}$ (molecular formula)

Molecular Formulas for Compounds

- The molecular formula is a whole-number multiple of the empirical formula.
- To determine the molecular formula, you need to know the empirical formula and the molar mass of the compound.

Molecular formula = (empirical formula) n, where \boldsymbol{n} is a positive integer.

$$
n=\frac{\text { molar mass }}{\text { empirical formula molar mass }}
$$

HW: Determining Empirical \& Molecular Formulas from molar mass and molecular formula mass

- Empirical formula of styrene is CH (molar mass of CH is $13.02 \mathrm{~g} / \mathrm{mol}$); its molecular molar mass is $104.1 \mathrm{~g} / \mathrm{mol}$
- What is the molecular formula of styrene?
a. $\mathrm{C}_{2} \mathrm{H}_{4}$
b. $\mathrm{C}_{8} \mathrm{H}_{8}$
c. $\mathrm{C}_{10} \mathrm{H}_{10}$
d. $\mathrm{C}_{6} \mathrm{H}_{6}$

HW: Determining Empirical \& Molecular Formulas from molar mass and molecular formula mass

- Empirical formula of styrene is CH (molar mass of CH is $13.02 \mathrm{~g} / \mathrm{mol}$); its molecular molar mass is $104.1 \mathrm{~g} / \mathrm{mol}$
- What is the molecular formula of styrene?
a. $\mathrm{C}_{2} \mathrm{H}_{4}$
b. $\mathrm{C}_{8} \mathrm{H}_{8}$ *
c. $\mathrm{C}_{10} \mathrm{H}_{10}$
d. $\mathrm{C}_{6} \mathrm{H}_{6}$

Example: Determining Empirical \& Molecular Formulas from \% elements

- A compound has 43.64% phosphorus and 56.36% oxygen by mass (assume 100 grams of compound)
- Compound has a molar mass of $283.88 \mathrm{~g} / \mathrm{mol}$
- What are the compound's empirical and molecular formulas?

Example on doc camera

Example: Determining Empirical \& Molecular Formulas from \% elements

- What is the mass of each element in 100.00 g of compound?
- Mass of $P=43.64 \mathrm{~g}$
- Mass of $\mathrm{O}=56.36 \mathrm{~g}$

Example: Determining Empirical \& Molecular Formulas from \% elements

- What are the moles of each element in 100.00 g of compound? (divide mass by atomic mass of each element)

$$
\begin{aligned}
& 43.64 \mathrm{~g} \not P \times \frac{1 \mathrm{~mol} \mathrm{P}}{30.97 \mathrm{~g} \not(}=1.409 \mathrm{~mol} \mathrm{P} \\
& 56.36 \mathrm{~g} \varnothing \times \frac{1 \mathrm{~mol} \mathrm{O}}{16.00 \mathrm{~g} \sigma}=3.523 \mathrm{~mol} \mathrm{O}
\end{aligned}
$$

- What is the empirical formula for the compound?
- Dividing each mole value by the smaller one gives

$$
\frac{1.409}{1.409}=1 \mathrm{P} \text { and } \frac{3.523}{1.409}=2.5 \mathrm{O}
$$

Example: Determining Empirical \& Molecular Formulas from \% elements

- Gives $\mathrm{PO}_{2.5}$
- Multiply both numbers by 2 to give the empirical formula $\mathrm{P}_{2} \mathrm{O}_{5}$

Example: Determining Empirical \& Molecular Formulas from \% elements

- What is the molecular formula for the compound?
- Compare the empirical formula mass to the molar mass of molecule.

Empirical formula mass	$=141.94 \mathrm{~g} / \mathrm{mol}$
Given molar mass	$=283.88 \mathrm{~g} / \mathrm{mol}$

$\frac{\text { Molar mass }}{\text { Empirical formula mass }}=\frac{283.88}{141.94}=2$

- Molecular formula is $\left(\mathrm{P}_{2} \mathrm{O}_{5}\right)_{2}$, or $\mathrm{P}_{4} \mathrm{O}_{10}$

Summary: Calculating Empirical \& Molecular Formulas Given \% Composition \& Molecular Formula Mass

- To Calculate Empirical Formula from \% composition:

1. assume $\mathbf{1 0 0}$ grams of compound
2. divide each element mass by element atomic mass to convert to molar ratio of elements = empirical formula

- To Calculate Molecular Formula from Empirical Formula and molar mass

1. Calculate empirical formula mass
2. Divide molecular formula mass by empirical formula mass to calculate n factor
3. Molecular formula $=(\text { empirical formula) })^{*} n$

HW: Percent Composition and Empirical Formulas

A colorless liquid has a composition of 84.1% carbon and 15.9% hydrogen by mass. (a) What is the empirical formula. (assume 100 grams of compound) (b) If the molar mass of this compound is $114.2 \mathrm{~g} / \mathrm{mol}$, what is the molecular formula of this compound.

Percent Composition and Empirical Formulas

Assume 100.0 g of the substance: Mole of carbon:

$$
84.1 \mathrm{~g} \mathrm{C} \times \frac{1 \mathrm{~mol} \mathrm{C}}{12.0 \mathrm{~g} \mathrm{C}}=7.01 \mathrm{~mol} \mathrm{C}
$$

Mole of hydrogen:
$15.9 \mathrm{~g} \mathrm{H} \times \frac{1 \mathrm{~mol} \mathrm{H}}{1.0 \mathrm{~g} \mathrm{H}}=15.9 \mathrm{~mol} \mathrm{H}$

Percent Composition and Empirical

Formulas

Empirical formula:

$$
\underbrace{\mathrm{C}_{7.01} \mathrm{H}_{15.9}}_{\text {smallest value for the ratio }} \quad \mathrm{C}_{7.01}^{7.01} \frac{\mathrm{H}_{15.9}}{7.01}=\mathrm{C}_{1} \mathrm{H}_{2.27}
$$

$$
\mathrm{C}_{1} \mathrm{H}_{2.27} \quad 0.27 \text { nearly } 0.25 \text { or } 1 / 4
$$

$$
\mathrm{C}_{1 \times 4} \mathrm{H}_{2.27 \times 4}=\mathrm{C}_{4} \mathrm{H}_{9}
$$

Molecular formula:

$$
\begin{gathered}
{[(12.0 * 4)+(1.0 * 9)]=57.0} \\
\mathrm{C} \\
\hline
\end{gathered}
$$

$$
\text { multiple }=\frac{114.2}{57.0}=2
$$

$$
\mathrm{C}_{4 \times 2} \mathrm{H}_{9 \times 2}=\mathrm{C}_{8} \mathrm{H}_{18}
$$

End 9/27F F section

Determining Empirical Formulas: Elemental Analysis (instrument that gives \% elements)

Combustion Analysis: A compound of unknown composition is burned with oxygen to produce the volatile combustion products CO_{2} and $\mathrm{H}_{2} \mathrm{O}$, which are separated and have their amounts determined by an automated instrument.

Determining Molecular Masses: Mass Spectrometry - spectra for getting FM

(a) A mass spectrometer

