\qquad
Name \qquad Print Name \qquad
Please show work on all questions for partial credit even on questions which do not specify. (20 total pts this quiz, actually worth 10 pts each quiz for a total of 80 total quiz points with 20 pts HW points - quiz + HW points worth 10% of grade)

1. For the reaction $\mathrm{I}_{2}(\mathrm{~g}) \rightarrow \mathrm{I}_{2}(\mathrm{~s}) \Delta \mathrm{H}^{\circ}=-62.4 \mathrm{~kJ}$ at $25^{\circ} \mathrm{C}$. based on this data, at $25^{\circ} \mathrm{C}$
(a) $\Delta \mathrm{H}^{0}{ }_{\text {vap }}=62.4 \mathrm{~kJ} / \mathrm{mol}$
(b) $\Delta H^{\circ}{ }_{\text {vap }}=-62.4 \mathrm{~kJ} / \mathrm{mol}$
(c) $\Delta \mathrm{H}_{\text {sub }}^{\mathrm{o}}=-62.4 \mathrm{~kJ} / \mathrm{mol}$
(d) $\mathrm{H}^{\circ}{ }_{\text {sub }}=62.4 \mathrm{~kJ} / \mathrm{mol}(4 \mathrm{pts}) \quad I_{2}(s) \rightarrow I_{2}(g)$ is sublimates
2. If you do a reaction in a calorimeter containing a 35.2 gram water solution which changes temperature from $20.5^{\circ} \mathrm{C}$ to $45.2^{\circ} \mathrm{C}$, what is the heat (q)? Assume that the calorimeter has a negligible effect on the heat and the specific heat (c) of water is a good approximation for the specific heat of the reaction solution $\left(4.18 \mathrm{~J} / \mathrm{g}{ }^{\circ} \mathrm{C}\right) . \quad(\mathrm{q}=\mathrm{m} \mathrm{C} \Delta \mathrm{T}) \quad(8 \mathrm{pts})$

3 a. Using the given standard enthalpies of formation show your set up for $\Delta \mathbf{H}^{\circ}$ for the following reaction. (not enough time to actually do the calculation) (8 pts)

$$
\begin{aligned}
& \Delta \mathrm{H}^{\circ}=\Delta \mathrm{H}_{\mathrm{f}}^{\mathrm{o}} \text { (products) }-\Delta \mathrm{H}_{\mathrm{f} \text { (reactants) }}^{\circ} \\
& 3 \mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s})+\mathrm{CO}(\mathrm{~g}) \rightarrow 2 \mathrm{Fe}_{3} \mathrm{O}_{4}(\mathrm{~s})+\mathrm{CO}_{2}(\mathrm{~g})
\end{aligned}
$$

b. What is the $\Delta \mathrm{H}^{\circ}{ }_{\mathrm{f}}\left[\mathrm{O}_{2}(\mathrm{~g})\right]$?
(zero el mart roost stale form

$$
\begin{aligned}
& m=35.2 \mathrm{~g} \quad \Delta T=45.2^{\circ} \mathrm{C}-20.5^{\circ} \mathrm{C}=24.7^{\circ} \mathrm{C}(2 \mathrm{~A}) \\
& q=(35.2 \mathrm{~g})(4.18 \mathrm{~J} / \mathrm{gxx})(24.78)=3634.3 \mathrm{~J} \\
& \text { (2N+) (in) (1D) } 3.63 \mathrm{hJ}
\end{aligned}
$$

Gen Chem II Lecture Spring 20 Dr. Hahn C section form A Quiz 1 1/15 Wednesday Exam \# \qquad
Name \qquad Key Print Name \qquad
Please show work on all questions for partial credit even on questions which do not specify. (20 total pts this quiz, actually worth 10 pts each quiz for a total of 80 total quiz points with 20 pts HW points - quiz +HW points worth 10% of grade)

1. Which of the following is a statement of the first law of thermodynamics (conservation of energy). (4 pts)
(a) $\mathrm{W}=-\mathrm{P} \Delta \mathrm{V}$ (b) $\Delta \mathrm{H}=\Delta \mathrm{E}+\mathrm{P} \Delta \mathrm{V}$
(c) $\Delta \mathrm{E}$ system $=\Delta \mathrm{E}$ surroundings
(d) $q=m c \Delta T$
2. (a) For the reaction shown below, is the reaction exothermic of endothermic (8 pts)
(b) For the reaction shown below how much heat is absorbed / releasedit you start with 15.2 grams of the ammonia? (formula mass $\mathrm{NH} 3=17.04 \mathrm{~g} / \mathrm{mol}$)

$$
4 \mathrm{NH}_{3}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 4 \mathrm{NO}(\mathrm{~g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \Delta \mathrm{H}^{0}=+168 \mathrm{~kJ}
$$

3. a) Using the given standard enthalpies of formation show your set up for $\Delta \mathbf{H}^{0}$ for the following reaction. (not enough time to actually do the calculation) (8 pts)

$$
\begin{aligned}
& \Delta \mathrm{H}^{\mathrm{o}}=\Delta \mathrm{H}_{\mathrm{f}}^{\mathrm{o}} \text { (products) }-\Delta \mathrm{H}_{\mathrm{f}}^{\mathrm{o}}(\text { reactants }) \\
& 3 \mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s})+\mathrm{CO}(\mathrm{~g}) \rightarrow 2 \mathrm{Fe}_{3} \mathrm{O}_{4}(\mathrm{~s})+\mathrm{CO}_{2}(\mathrm{~g})
\end{aligned}
$$

Species $\quad \Delta \mathrm{H}^{\circ} \mathrm{f}$ of $(\mathrm{kJ} / \mathrm{mol})$

| Species | $\Delta \mathrm{H}^{\mathrm{o}}$ f of $(\mathrm{kJ} / \mathrm{mol})$ |
| :--- | ---: | :--- |
| $\mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s})$ | -824.2 |
| $\mathrm{Fe}_{3} \mathrm{O}_{4}(\mathrm{~s})$ | -1118.4 |
| $\mathrm{CO}(\mathrm{g})$ | -110.5 |
| $\mathrm{CO}_{2}(\mathrm{~g})$ | -393.5 |

$$
[2(-1118.4)+(-393.5)]-[3(-824.2)+(-110.5)]=-47.2 k 5
$$

b) What is the $\mathrm{HH}_{\mathrm{f}}^{\mathrm{f}} \mathrm{Fe}(\mathrm{s})$? Zero element most stole form

Gen Chem II Lecture Spring, 20 Dr. Hahn C section form B Quiz 1 1/15 Wednesday Exam \# \qquad
Name \qquad Print Name
Please show work on all questions for partial credit even on questions which do not specify. (20 total pts this quiz, actually worth 10 pts each quiz for a total of 80 total quiz points with 20 pts HW points - quiz +HW points worth 10% of grade)
work $=2$ emo

1. For a process at constant pressure, choose the best statement. (Constant pressure is the way most chemical reactions are conducted.) (4 pts)
(a) $\quad \Delta \mathrm{E}=\mathrm{q}$ and $\mathrm{w}=0$
(b) $\Delta H=q$
(c) $\Delta \mathrm{E}=\Delta \mathrm{H}$
(d) $\Delta \mathrm{E}=\mathrm{w}$ and $\mathrm{q}=0$
2. Given the following reactions. (Hess Law) (8 pts)

3. If a car engine does expansion work inside a car piston with a volume of 2.5 Liters at 20.7 atm pressure, how much work is done ? (work $=-\mathrm{P} \Delta \mathrm{V}, 1$ Liter $\mathrm{atm}=101.33$ Joule). (8 pts)

$$
\begin{aligned}
& W=-P \Delta V=-(20.1 \mathrm{ath})(2.5 l)=51.15 \mathrm{atml} \mathrm{l} \\
& 51.15 \mathrm{l} \mathrm{ath} \times \frac{101.33 \mathrm{~J}}{1 l=5243.8 J}=5.24 \mathrm{~kJ}
\end{aligned}
$$

Gen Chem II Lecture Spring 20 Dr. Hahn A section Quiz 1 1/15 Wednesday Exam \# \qquad
Name \qquad Print Name \qquad
Please show work on all questions for partial credit even on questions which do not specify. (20 total pts this quiz, actually worth 10 pts each quiz for a total of 80 total quiz points with 20 pts HW points - quiz + HW points worth 10% of grade)

1. For the reaction $\mathrm{I}_{2}(\mathrm{~g}) \rightarrow \mathrm{I}_{2}(\mathrm{~s}) \Delta \mathrm{H}^{\circ}=-62.4 \mathrm{~kJ}$ at $25^{\circ} \mathrm{C}$. based on this data, at $25^{\circ} \mathrm{C}$
(a) $\Delta \mathrm{H}^{\mathrm{o}}$ vap $=62.4 \mathrm{~kJ} / \mathrm{mol}$
(b) $\Delta \mathrm{H}^{\mathrm{o}}{ }_{\text {vap }}=-62.4 \mathrm{~kJ} / \mathrm{mol}$
(c) $\Delta \mathrm{H}^{\mathrm{o}}$ sub $=-62.4 \mathrm{~kJ} / \mathrm{mol}$
(d) $\Delta \mathrm{H}^{\mathrm{o}}{ }_{\text {sub }}=62.4 \mathrm{~kJ} / \mathrm{mol}(4 \mathrm{pts})$
2. If you do a reaction in a calorimeter containing a 35.2 gram water solution which changes temperature from $20.5^{\circ} \mathrm{C}$ to $45.2^{\circ} \mathrm{C}$, what is the heat (q) ? Assume that the calorimeter has a negligible effect on the heat and the specific heat (c) of water is a good approximation for the specific heat of the reaction solution $\left(4.18 \mathrm{~J} / \mathrm{g}{ }^{\circ} \mathrm{C}\right) . \quad(\mathrm{q}=\mathrm{m} \mathrm{C} \Delta \mathrm{T}) \quad(8 \mathrm{pts})$

3 a. Using the given standard enthalpies of formation show your set up for $\Delta \mathbf{H}^{\mathbf{0}}$ for the following reaction. (not enough time to actually do the calculation) (8 pts)
$\Delta \mathrm{H}^{\mathrm{o}}=\Delta \mathrm{H}_{\mathrm{f}}^{\mathrm{o}}$ (products) $-\Delta \mathrm{H}_{\mathrm{f}}^{\mathrm{o}}$ (reactants)
$3 \mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s})+\mathrm{CO}(\mathrm{g}) \rightarrow 2 \mathrm{Fe}_{3} \mathrm{O}_{4}(\mathrm{~s})+\mathrm{CO}_{2}(\mathrm{~g})$

Species $\quad \Delta \mathrm{H}_{\mathrm{f}}^{\mathrm{o}}$ of $(\mathrm{kJ} / \mathrm{mol})$
$\mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s}) \quad-824.2$
$\mathrm{Fe}_{3} \mathrm{O}_{4}(\mathrm{~s}) \quad-1118.4$
$\mathrm{CO}(\mathrm{g}) \quad-110.5$
$\mathrm{CO}_{2}(\mathrm{~g}) \quad-393.5$
b. What is the $\Delta \mathrm{H}^{\mathrm{o}}\left[\mathrm{O}_{2}(\mathrm{~g})\right]$? \qquad

Gen Chem II Lecture Spring 20 Dr. Hahn C section form A Quiz 1 1/15 Wednesday Exam \# \qquad
Name \qquad Print Name \qquad
Please show work on all questions for partial credit even on questions which do not specify. (20 total pts this quiz, actually worth 10 pts each quiz for a total of 80 total quiz points with 20 pts HW points - quiz + HW points worth 10% of grade)
3. Which of the following is a statement of the first law of thermodynamics (conservation of energy). (4 pts)
(a) $\mathrm{W}=-\mathrm{P} \Delta \mathrm{V}$ (b) $\quad \Delta \mathrm{H}=\Delta \mathrm{E}+\mathrm{P} \Delta \mathrm{V}$
(c) $\Delta \mathrm{E}$ system $=\Delta \mathrm{E}$ surroundings
(d) $\mathrm{q}=\mathrm{mc} \Delta \mathrm{T}$
4. (a) For the reaction shown below, is the reaction exothermic or endothermic? (8 pts)
(b) For the reaction shown below how much heat is absorbed / released if you start with 15.2 grams of the ammonia? (formula mass $\mathrm{NH} 3=17.04 \mathrm{~g} / \mathrm{mol}$)
$4 \mathrm{NH}_{3}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 4 \mathrm{NO}(\mathrm{g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \Delta \mathrm{H}^{\mathrm{o}}=+168 \mathrm{~kJ}$
5. a) Using the given standard enthalpies of formation show your set up for $\Delta \mathbf{H}^{\mathbf{o}}$ for the following reaction. (not enough time to actually do the calculation) (8 pts)

```
\DeltaH}\mp@subsup{\textrm{H}}{}{0}=\Delta\mp@subsup{\textrm{H}}{\textrm{f}}{0
3 Fe}2\mp@subsup{\textrm{O}}{3}{}(\textrm{s})+\textrm{CO}(\textrm{g})->2\mp@subsup{\textrm{Fe}}{3}{}\mp@subsup{\textrm{O}}{4}{}(\textrm{s})+\mp@subsup{\textrm{CO}}{2}{}(\textrm{g}
```

Species $\quad \Delta \mathrm{H}^{\mathrm{o}}$ of $(\mathrm{kJ} / \mathrm{mol})$

$\mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s})$	-824.2
$\mathrm{Fe}_{3} \mathrm{O}_{4}(\mathrm{~s})$	-1118.4
$\mathrm{CO}(\mathrm{g})$	-110.5
$\mathrm{CO}_{2}(\mathrm{~g})$	-393.5

b) What is the $\Delta \mathrm{H}_{\mathrm{f}}^{\mathrm{o}}[\mathrm{Fe}(\mathrm{s})]$?
\qquad
Name \qquad Print Name \qquad
Please show work on all questions for partial credit even on questions which do not specify. (20 total pts this quiz, actually worth 10 pts each quiz for a total of 80 total quiz points with 20 pts HW points - quiz +HW points worth 10% of grade)
6. For a process at constant pressure, choose the best statement. (Constant pressure is the way most chemical reactions are conducted.) (4 pts)
(a) $\quad \Delta \mathrm{E}=\mathrm{q}$ and $\mathrm{w}=0$
(b) $\Delta \mathrm{H}=\mathrm{q}$
(c) $\Delta \mathrm{E}=\Delta \mathrm{H}$
(d) $\Delta \mathrm{E}=\mathrm{w}$ and $\mathrm{q}=0$
7. Given the following reactions. (Hess Law) (8 pts)
$\mathrm{S}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{SO}_{2}(\mathrm{~g}) \quad \Delta \mathrm{H}^{\mathrm{o}}=-296.1 \mathrm{~kJ}$
$2 \mathrm{SO}_{3}(\mathrm{~g}) \rightarrow 2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \quad \Delta \mathrm{H}^{\mathrm{o}}=196.2 \mathrm{~kJ}$
Calculate the $\Delta \mathrm{H}^{\circ}$ for the reaction below. Show work.
$2 \mathrm{~S}(\mathrm{~s})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{SO}_{3}(\mathrm{~g})$
8. If a car engine does expansion work inside a car piston with a volume of 2.5 Liters at 20.7 atm pressure, how much work is done ? (work $=-\mathrm{P} \Delta \mathrm{V}, 1$ Liter atm $=101.33$ Joule). (8 pts)

