\qquad
Name \qquad Print Name \qquad
Please show work on all questions for partial credit even on questions which do not specify. (20 total pts) (1 pt each multiple choice question)

1. Which one of the following statements does not describe the equilibrium state?
(A) Equilibrium is dynamic and there is no net conversion to reactants and products.
(B) The rate of the forward reaction is equal to the rate of the reverse reaction.
(C) The concentration of the reactants and products reach a constant level.
(D) The concentration of the reactants is equal to the concentration of the products.
2. K_{p} is relate to K_{c} by the equation $\mathrm{K}_{\mathrm{p}}=\mathrm{K}_{\mathrm{c}}(\mathrm{RT})^{\stackrel{r}{r}}$. What is the value of n for the reaction below ?
$\mathrm{NH}_{4} \mathrm{NO}_{3}(\mathrm{~s}) \rightarrow \mathrm{N}_{2} \mathrm{O}(\mathrm{g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
(A) +1
(B) +2
(C) -2
(D) -1
3. Write the equilibrium equation for forward run: $2 \mathrm{CH}_{4}(\mathrm{~g})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{CO}(\mathrm{g})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
(A) $\mathrm{Kp}=\frac{\left[\mathrm{P}_{\mathrm{CO}}\right]^{2}\left[\mathrm{P}_{\mathrm{HOO}}\right]^{4}}{\left[\mathrm{P}_{\mathrm{CH} 4}\right]^{2}\left[\mathrm{POO}_{2}\right]^{3}}$
(B) $\mathrm{Kp}=\frac{2\left[\mathrm{P}_{\mathrm{CH} 4}\right]+3\left[\mathrm{P}_{\mathrm{O}}\right]}{2[\mathrm{P} \mathrm{PO}]+4\left[\mathrm{P}_{\mathrm{H} 2 \mathrm{O}}\right]}$
(C) $\mathrm{Kp}=\frac{\left[\mathrm{P}_{\mathrm{CH} 4}\right]^{2}[\mathrm{PO} 2]^{3}}{[\mathrm{PCO}]^{2}\left[\mathrm{P}_{\mathrm{H} 2 \mathrm{O}}\right]^{4}}$
(D) $\mathrm{Kp}=\frac{2\left[\mathrm{P}_{\mathrm{CO}}\right]+4\left[\mathrm{P}_{\mathrm{H} 2 \mathrm{O}}\right]}{2\left[\mathrm{P}_{\mathrm{CH} 4}\right]+3\left[\mathrm{P}_{\mathrm{O} 2}\right]}$
4. If K_{c} equals 0.110 at $25^{\circ} \mathrm{C}$ for the reaction : $\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \rightarrow 2 \mathrm{NO}_{2}(\mathrm{~g})$, what is the K_{c} for the reaction:

$$
\begin{equation*}
6 \mathrm{NO}_{2}(\mathrm{~g}) \rightarrow 3 \mathrm{~N}_{2} \mathrm{O}_{4}(\mathrm{~g}) ?\left(\frac{1}{0.110}\right)^{3} \leftarrow \tag{A}
\end{equation*}
$$

0.11 (B) 751
(C) 7.5
(D) 1.3×10^{-3}
5. Iron oxide ores are reduced to Fe metal by exothermic run with CO :

$$
\begin{aligned}
\mathrm{FeO}(\mathrm{~s}) & \mathrm{CO}(\mathrm{~g}) \underset{\leftarrow}{\leftarrow} \mathrm{Fe}(\mathrm{~s})+\mathrm{CO}_{2}(\mathrm{~g}) \\
&
\end{aligned}
$$

Which of the following changes in condition will cause the equilibrium to shift to the right?
(A) Add CO_{2}
(B) add CO
(C) add Fe (s)
(D) remove FeO

SA1: Cyclohexane $\left(\mathrm{C}_{6} \mathrm{H}_{12}\right)$ undergoes a molecular rearrangement in the presence of AlCl_{3} to form methylcylcopentane $\left(\mathrm{CH}_{3} \mathrm{C}_{5} \mathrm{H}_{9}\right)$ according to the equation: $\mathrm{C}_{6} \mathrm{H}_{12} \rightarrow \mathrm{CH}_{3} \mathrm{C}_{5} \mathrm{H}_{9} \quad \mathrm{~K}_{\mathrm{C}}=\mathrm{O}_{1} 143$ R KN goes \longleftarrow
If $\mathrm{K}_{\mathrm{c}}=0.143$ at $25^{\circ} \mathrm{C}$ for this reaction. $\mathrm{C}_{6} \mathrm{H}_{12}$ initial concentration is 0.200 M and $\mathrm{CH}_{3} \mathrm{C}_{5} \mathrm{H}_{9}$ initial concentration is 0.100 M . Set up the ICE table and show the expression for K_{c}. Assume that the variable x is the amount of $\mathrm{C}_{6} \mathrm{H}_{12}$ being

$$
\begin{aligned}
& k_{c^{2}}=\frac{(0.100-x)}{(0.200}=0.143 \text { answer }
\end{aligned}
$$

$$
\begin{aligned}
& (0.100-x)=(0.143)(0.200)+0.143 x \\
& { }_{0}^{0.100}=0.0286=1 x+0.143 x
\end{aligned}
$$

$\mathrm{SA} 2:$ Consider the reaction $\mathrm{HCO}_{3}^{-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{CO}_{3}^{-2}(\mathrm{aq})+\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})$.
The $\mathrm{K}_{\text {eq }}$ for this reaction is 5.6×10^{-11}. Calculate the value of Q . Does the reaction g forward to product or backward to reactant? $\quad\left[\mathrm{HCO}_{3}^{-}\right]=5.6 \times 10^{-11} \quad\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=1.2 \times 10^{-11} \quad\left[\mathrm{CO}_{3}^{-2}\right]=5.6 \times 10^{-11} \quad(7 \mathrm{pts})$

Gen Chem II Lecture Spring 20 Dr. Hahn C section Form A Quiz 6 3/6 Friday Exam \# \qquad
Name \qquad Print Name \qquad
Please show work on all questions for partial credit even on questions which do not specify. (20 total pts) (1 pt each multiple choice)

1. Write the equation for the reverse reaction:

$$
2 \mathrm{CH}_{4}(\mathrm{~g})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{CO}(\mathrm{~g})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

(A) $\not \mathrm{Kp}=\frac{\left[\mathrm{PCO}^{2}\left[\mathrm{P}_{\mathrm{H} 2 \mathrm{O}}\right]^{4}\right.}{\left[\mathrm{P}_{\mathrm{CH} 4}\right]^{2}\left[\mathrm{PO}_{\mathrm{O}}\right]^{3}}$
(B) $\mathrm{Kp}=\frac{2\left[\mathrm{P}_{\mathrm{CH} 4}\right]+3\left[\mathrm{PO}_{\mathrm{O}}\right]}{2\left[\mathrm{P}_{\mathrm{CO}}\right]+4\left[\mathrm{P}_{\mathrm{H} 2 \mathrm{O}}\right]}$
(C) $\mathrm{Kp}=\frac{\stackrel{\left[\mathrm{P}_{\mathrm{CH} 4}\right]^{2}\left[\mathrm{PO}_{2}\right]^{3}}{\leftarrow}}{\left[\mathrm{P}_{\mathrm{CO}}\right]^{2}\left[\mathrm{P}_{\mathrm{H} 2 \mathrm{O}}\right]^{4}}$
(D) $\mathrm{Kp}=\frac{2\left[\mathrm{P}_{\mathrm{CO}}\right]+4\left[\mathrm{P}_{\mathrm{H} 2 \mathrm{O}}\right]}{2\left[\mathrm{P}_{\mathrm{CH} 4}\right]+3\left[\mathrm{PO}_{2}\right]}$
2. What is true about the relationship of Kp and Kc for the run: $2 \mathrm{CH}_{4}(\mathrm{~g})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{CO}(\mathrm{g})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$

$$
\begin{array}{llll}
\text { (A) } \mathrm{Kp} \leqslant \mathrm{Kc} & \text { (B) } \mathrm{Kp}>\mathrm{Kc} & \text { (C) } \mathrm{Kp}=\mathrm{Kc} & \text { (D) } \mathrm{Kp} \text { and } \mathrm{Kc} \text { are not related }
\end{array} \quad \Delta \eta=6-5=+1
$$

3 What is the equilibrium equation for the following run? $\mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{~g})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
(A) $\mathrm{Kp}=\frac{\left[\mathrm{P}_{\mathrm{CO} 2}\right]^{2}\left[\mathrm{P}_{\mathrm{H} 2 \mathrm{O}}\right]^{2}}{\left[\mathrm{P}_{\mathrm{C} 2 \mathrm{H} 4}\right]\left[\mathrm{P}_{\mathrm{O} 2}\right]^{3}}$
(B) $\mathrm{Kp}=\frac{\left[\mathrm{P}_{\mathrm{C} 2 \mathrm{H}}\right]\left[\mathrm{PO}_{\mathrm{O}}\right]^{3}}{\left[\mathrm{P}_{\mathrm{CO} 2}\right]^{2}}$
(C) $\mathrm{l} p=\frac{\left[\mathrm{P}_{\mathrm{CO} 2}\right]^{2}}{\left[\mathrm{P}_{\mathrm{C2H} 4}\right]\left[\mathrm{PO}_{\mathrm{O}}\right]^{3}}$
(D) $\mathrm{Kp}=\frac{\left[\mathrm{P}_{\mathrm{C2H} 4}\right]\left[\mathrm{P}_{\mathrm{O} 2}\right]^{3}}{\left.\left[\mathrm{P}_{\mathrm{CO} 2}\right]^{3} \mathrm{P}_{\mathrm{H} 2 \mathrm{O}}\right]^{2}}$
4. If K_{c} equals 0.110 at $25^{\circ} \mathrm{C}$ for the reaction: $\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \rightarrow 2 \mathrm{NO}_{2}(\mathrm{~g})$, what is the K_{c} for the reaction:

(C) 7.5
(D) 1.3×10^{-3}

5. Which statement is true for a reaction with $\mathrm{K}_{\mathrm{c}}=8.90 \times 10^{-12}$
(A) The reaction proceeds hardly at all towards completion. (B) The reaction proceeds nearly all the way to completion (C) Increasing the temperature will not change the value of K_{c} (D) There are appreciable concentrations of both reactants and products

At $250^{\circ} \mathrm{C} \quad 0.250 \mathrm{M} \mathrm{PCl}_{5}$ is added to the flask. None of the product is present initially. $\mathrm{K}_{\mathrm{c}}=1.80$ Show the ICE table and the expression for the $\mathrm{K}_{\mathrm{c} .}$. 8 pts)

SA \#2: The decomposition of ammonia is $2 \mathrm{NH}_{3}(\mathrm{~g}) \rightarrow \mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g})$. If the partial pressure of ammonia is 1.60 x $10^{-3} \mathrm{~atm}$ and the partial pressure of N_{2} and H_{2} are each 0.250 atm at equilibrium, what is the value for K_{p} at $400^{\circ} \mathrm{C}$ for the forward reaction? What is the number for $\Delta \mathrm{n}$ for the reaction? $\mathrm{Kp}=\mathrm{Kc}(\mathrm{RT})^{\Delta \mathrm{n}} \quad(7 \mathrm{pts})$

Gen Chem II Lecture Spring 20 Dr. Hahn C section Form B Quiz 6 3/6 Friday Exam \# \qquad
Name \qquad Print Name \qquad
Please show work on all questions for partial credit even on questions which do not specify. (20 total pts)
(1 pt each multiple choice)

1. Write the equation for the reverse reaction: $2 \mathrm{CH}_{4}(\mathrm{~g})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{CO}(\mathrm{g})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$

$$
(\mathrm{A}) \mathrm{Kp}=\frac{2\left[\mathrm{P}_{\mathrm{CH} 4}\right]+3\left[\mathrm{P}_{\mathrm{O} 2}\right]}{2\left[\mathrm{P}_{\mathrm{CO}}\right]+4\left[\mathrm{P}_{\mathrm{H} 2 \mathrm{O}}\right]}
$$

(B) $\mathrm{Kp}=\frac{\left[\mathrm{P}_{\mathrm{CO}}\right]^{2}\left[\mathrm{P}_{\mathrm{H} 2 \mathrm{O}}\right]^{4}}{\left[\mathrm{P}_{\mathrm{CH} 4}\right]^{2}\left[\mathrm{PO}_{2}\right]^{3}}$
(C) $\mathrm{Kp}=\frac{\left[\mathrm{P}_{\mathrm{CH} 4}\right]^{2}\left[\mathrm{P}_{\mathrm{O} 2}\right]^{3}}{\left[\mathrm{P}_{\mathrm{CO}}\right]^{2}\left[\mathrm{P}_{\mathrm{H} 2 \mathrm{O}}\right]^{4}}$
(D) $\mathrm{Kp}=2\left[\mathrm{P}_{\mathrm{CO}}\right]+4\left[\mathrm{P}_{\mathrm{H} 2 \mathrm{O}}\right]$
2. What is true about the relationship of Kp and Kc for the $\mathrm{rxn}: 2 \mathrm{CH}_{4}(\mathrm{~g})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{CO}(\mathrm{g})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$

$$
\stackrel{\leftarrow}{K_{c}} \quad \Delta n=(4+2)
$$

(A) Kp, Kc (B) Kp and Kc are not related
(C) $\mathrm{Kp}>\mathrm{Kc}$
(D) $\mathrm{Kp}=\mathrm{Kc}$

3 What is the equilibrium equation for the following rxn ? $\mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{~g})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
(A) $\mathrm{Kp}=\frac{\left[\mathrm{P}_{\mathrm{CO} 2}\right]^{2}}{\left[\mathrm{P}_{\mathrm{C} 2 \mathrm{H} 4}\right]\left[\mathrm{P}_{\mathrm{O} 2}\right]^{3}}$
(B) $\mathrm{Kp}=\frac{\left[\mathrm{P}_{\mathrm{C} 2 \mathrm{H} 4}\right]\left[\mathrm{P}_{\mathrm{O} 2}\right]^{3}}{\left[\mathrm{P}_{\mathrm{CO} 2}\right]^{2}}$
(C) $\mathrm{Kp}=\frac{\left[\mathrm{P}_{\mathrm{CO} 2}\right]^{2}\left[\mathrm{P}_{\mathrm{H} 2 \mathrm{O}}\right]^{2}}{\left[\mathrm{P}_{\mathrm{C} 2 \mathrm{H} 4}\right]\left[\mathrm{P}_{\mathrm{O} 2}\right]^{3}}$
(D) $\mathrm{Kp}=\frac{\left[\mathrm{P}_{\mathrm{C} 2 \mathrm{H} 4]}\left[\mathrm{P}_{\mathrm{O} 2}\right]^{3}\right.}{\left[\mathrm{P}_{\mathrm{CO} 2}\right]^{3}\left[\mathrm{P}_{\mathrm{H} 2 \mathrm{O}}\right]^{2}}$
4. If K_{c} equals 0.110 at $25^{\circ} \mathrm{C}$ for the reaction: $\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \rightarrow 2 \mathrm{NO}_{2}(\mathrm{~g})$, what is the K_{c} for the reaction:
(A) The reaction proceeds nearly all the way to completion (B) The reaction proceeds hardly at all towards completion. (C) Increasing the temperature will not change the value of K_{c} (D) There are appreciable concentrations of both reactants and products
SA \#1: Given the following reaction: $\mathrm{PCl}_{5}(\mathrm{~g}) \rightarrow \mathrm{PCl}_{3}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})$

At $250^{\circ} \mathrm{C} 0.150 \mathrm{M} \mathrm{PCl}_{5}$ is added to the flask. None of the product is present initially. and the expression for the K_{c}. (8 pts)

$\quad P C_{5}$	PCl_{3}	Cl_{2}	
i	0.150	0	0
c	$-x$	$+x$	$+x$
e	$0.150-x$	Spa $_{x}$	x

SA \#2: The decomposition of ammonia is $2 \mathrm{NH}_{3}(\mathrm{~g}) \rightarrow \mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g})$. If the partial pressure of ammonia is 2.60 x $10^{-5} \mathrm{~atm}$ and the partial pressure of N_{2} and H_{2} are each 0.520 atm at equilibrium, what is the value for K_{p} at $400^{\circ} \mathrm{C}$ for the forward reaction? What is the number for $\Delta \mathrm{n}$ for the reaction? $\mathrm{Kp}=\mathrm{Kc}(\mathrm{RT})^{\Delta \mathrm{n}}(7 \mathrm{pts})$

$$
\begin{aligned}
& 1.08 \times 10^{8} \\
& \Delta n=(1+3)-2=2,5 \\
& \text { Section C form B " } 1 \text { * }
\end{aligned}
$$

$$
\begin{aligned}
& \text { 5. Which statement is true for a reaction with } \mathrm{K}_{\mathrm{c}}=8.90 \times 10^{-12}
\end{aligned}
$$

Gen Chem II Lecture Spring 20 Dr. Hahn Makeup Quiz Quiz 6 3/6 Friday Exam \# \qquad
Name \qquad Print Name \qquad
Please show work on all questions for partial credit even on questions which do not specify. (20 total pts)
(1 pt each multiple choice)

1. Write the equation for the reverse reaction: $\quad 2 \mathrm{CH}_{4}(\mathrm{~g})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{CO}(\mathrm{g})+4 \mathrm{H}_{2} \mathrm{O}$ (1)
$(\mathrm{A}) \mathrm{Kp}=2\left[\mathrm{P}_{\mathrm{CH} 4}\right]+3\left[\mathrm{P}_{2}\right]$ $2\left[\mathrm{PCO}^{2}\right]+4\left[\mathrm{P}_{\mathrm{H} 2 \mathrm{O}}\right]$
(B) $\mathrm{Kp}=\left[\mathrm{Pcol}^{2}\left[\mathrm{PH}_{\mathrm{H}}\right]^{4}\right.$ $\left[\overline{\left.\mathrm{P}_{\mathrm{CH}} 4\right]^{2}\left[\mathrm{PO}_{2}\right]^{3}}\right.$
(C) $\mathrm{Kp}=\left[\mathrm{P}_{\mathrm{CH} 4}\right]^{2}\left[\mathrm{PO}_{2}\right]^{3}$
(D) $\mathrm{Kp}=\frac{2\left[\mathrm{P}_{\mathrm{CO}}\right]+4\left[\mathrm{P}_{\mathrm{H} 2 \mathrm{O}}\right]}{2\left[\mathrm{P}_{\mathrm{CH}}\right]+3\left[\mathrm{P}_{\mathrm{O}}\right]}$
2. What is true about the relationship of Kp and Kc for the $\mathrm{rxn}: 2 \mathrm{CH}_{4}(\mathrm{~g})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{CO}(\mathrm{g})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
(A) $\mathrm{Kp}>\mathrm{Kc}$
(B) Kp and Kc are not related
(C) $\mathrm{Kp}<\mathrm{Kc}$
(D) $\mathrm{Kp}=\mathrm{Kc} \quad \Delta h=6-S=1$

3 What is the equilibrium equation for the following rxn ? $\mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{~g})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
(A) $\mathrm{Kp}=\frac{\left[\mathrm{P}_{\mathrm{CO} 2}\right]^{2}}{\left[\mathrm{P}_{\mathrm{C} 2 \mathrm{H} 4}\right]\left[\mathrm{PO}_{2}\right]^{3}}$
(B) $\mathrm{Kp}=\frac{\left[\mathrm{P}_{\mathrm{C} 2 \mathrm{H} 4}\left[\mathrm{PO}_{\mathrm{O}}\right]^{3}\right.}{\left[\mathrm{P}_{\mathrm{CO} 2}\right]^{2}}$
(C) $p=\frac{\left[\mathrm{P}_{\mathrm{CO} 2}\right]^{2}\left[\mathrm{P}_{\mathrm{HzO}}\right]^{2}}{\left[\mathrm{P}_{\mathrm{C} 2 \mathrm{H} 4}\left[\mathrm{PO}_{2}\right]^{3}\right.}$
(D) $\mathrm{Kp}=\frac{\left[\mathrm{P}_{\mathrm{CLH}} 7\right]\left[\mathrm{PO}_{\mathrm{O}}\right]^{3}}{\left[\mathrm{P}_{\mathrm{CO} 2}\right]^{3}\left[\mathrm{P}_{\mathrm{H} 2 \mathrm{O}}\right]^{2}}$
4. If K_{c} equals 0.110 at $25^{\circ} \mathrm{C}$ for the reaction: $\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \rightarrow 2 \mathrm{NO}_{2}(\mathrm{~g})$, what is the K_{c} for the reaction:
$\times 2$
$(\mathrm{~A}) 4 \mathrm{NO}_{2}(\mathrm{~g}) \underset{\mathrm{L}}{\longrightarrow}$
\leftarrow $2 \mathrm{~N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \&(\mathrm{~A}) 82.6$
(B) 1.3×10^{-3}
$\stackrel{\leftarrow}{(\mathrm{C})} 0.11$
(D) $751\left(\frac{1}{0.110}\right)^{2}=82.6$
5. Which statement is true for a reaction with $\mathrm{K}_{\mathrm{c}}=8.90 \times 10^{-12}$
(A) The reaction proceeds nearly all the way to completion (B) The reaction proceeds hardly at all towards completion. (C) Increasing the temperature will not change the value of K_{c} (D) There are appreciable concentrations of both reactants and products
SA \#1: Given the following reaction: $\mathrm{PCl}_{3}(\mathrm{~g}) \underset{\leftarrow}{\leftarrow} \mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow \mathrm{PCl}_{5}(\mathrm{~g})$
At $250^{\circ} \mathrm{C} 0.150 \mathrm{M} \mathrm{PCl}_{3}, 0.210 \mathrm{M} \mathrm{Cl}_{2}$ is added to the flask. None of the product is present initially. $\mathrm{K}_{\mathrm{c}}=4.20$ Show

SA \#2: The decomposition of ammonia is $2 \mathrm{NH}_{3}(\mathrm{~g}) \rightarrow \mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g})$. If the partial pressure of ammonia is 2.60 x $10^{-5} \mathrm{~atm}$ and the partial pressure of N_{2} is 0.359 atm and H_{2} are 0.723 atm at equilibrium, what is the value for K_{p} at $400^{\circ} \mathrm{C}$ for the forward reaction? What is the number for $\Delta \mathrm{n}$ for the reaction? $\mathrm{Kp}=\mathrm{Kc}(\mathrm{RT})^{\Delta \mathrm{n}} \quad(7 \mathrm{pts})$

Gen Chem II Lecture Spring 20 Dr. Hahn A section Quiz 6 3/6 Friday Exam \# \qquad
Name \qquad Print Name \qquad
Please show work on all questions for partial credit even on questions which do not specify. (20 total pts)
(1 pt each multiple choice question)

1. Which one of the following statements does not describe the equilibrium state ?
(A) Equilibrium is dynamic and there is no net conversion to reactants and products.
(B) The rate of the forward reaction is equal to the rate of the reverse reaction.
(C) The concentration of the reactants and products reach a constant level.
(D) The concentration of the reactants is equal to the concentration of the products.
2. K_{p} is relate to K_{c} by the equation $K_{p}=K_{c}(R T)^{n}$. What is the value of n for the reaction below ?
$\mathrm{NH}_{4} \mathrm{NO}_{3}(\mathrm{~s}) \rightarrow \mathrm{N}_{2} \mathrm{O}(\mathrm{g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
(A) +1
(B) +2
(C) -2
(D) -1
3. Write the equilibrium equation for the forward rxn: $2 \mathrm{CH}_{4}(\mathrm{~g})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{CO}(\mathrm{g})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
(A) $\mathrm{Kp}=\left[\mathrm{P}_{\mathrm{CO}}\right]^{2}\left[\mathrm{P}_{\mathrm{H} 2 \mathrm{O}}\right]^{4}$ $4\left[\mathrm{P}_{\mathrm{H} 2 \mathrm{O}}\right]$

$$
\left[\overline{\left.\mathrm{P}_{\mathrm{CH} 4}\right]^{2}\left[\mathrm{P}_{\mathrm{O} 2}\right]^{3}}\right.
$$

(B) $\mathrm{Kp}=2\left[\underline{\left.\mathrm{P}_{\mathrm{CH} 4}\right]+3\left[\mathrm{PO}_{2}\right]}\right.$
(C) $\mathrm{Kp}=\left[\mathrm{P}_{\mathrm{CH} 4}\right]^{2}\left[\mathrm{PO}_{\mathrm{O}}\right]^{3}$
(D) $\mathrm{Kp}=2\left[\mathrm{P}_{\mathrm{Co}}\right]+$

$$
2\left[\mathrm{P}_{\mathrm{CO}}\right]+4\left[\mathrm{P}_{\mathrm{H} 2 \mathrm{O}}\right]
$$

$$
\overline{\left[\mathrm{P}_{\mathrm{CO}}\right]^{2}\left[\mathrm{P}_{\mathrm{H} 2 \mathrm{O}}\right]^{4}}
$$

4. If K_{c} equals 0.110 at $25^{\circ} \mathrm{C}$ for the reaction: $\quad \mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \rightarrow 2 \mathrm{NO}_{2}(\mathrm{~g})$, what is the K_{c} for the reaction:
$6 \mathrm{NO}_{2}(\mathrm{~g}) \rightarrow 3 \mathrm{~N}_{2} \mathrm{O}_{4}(\mathrm{~g}) ?$
$\begin{array}{lll}\text { (A) } & 0.11 & \text { (B) } 751\end{array}$
(C) 7.5
(D) 1.3×10^{-3}
5. Iron oxide ores are reduced to Fe metal by exothermic rxn with $\mathrm{CO}: ~ \mathrm{FeO}(\mathrm{s})+\mathrm{CO}(\mathrm{g}) \underset{\mathrm{Fe}}{\leftarrow} \boldsymbol{\mathrm { Fe }}(\mathrm{s})+\mathrm{CO}_{2}(\mathrm{~g})$

Which of the following changes in condition will cause the equilibrium to shift to the right ?
(A) Add CO_{2}
(B) add CO
(C) add Fe (s)
(D) remove FeO

SA1: Cyclohexane $\left(\mathrm{C}_{6} \mathrm{H}_{12}\right)$ undergoes a molecular rearrangement in the presence of AlCl_{3} to form methylcylcopentane $\left(\mathrm{CH}_{3} \mathrm{C}_{5} \mathrm{H}_{9}\right)$ according to the equation: $\quad \mathrm{C}_{6} \mathrm{H}_{12} \rightarrow \mathrm{CH}_{3} \mathrm{C}_{5} \mathrm{H}_{9}$

```
\leftarrow
```

If $\mathrm{K}_{\mathrm{c}}=0.143$ at $25^{\circ} \mathrm{C}$ for this reaction. $\mathrm{C}_{6} \mathrm{H}_{12}$ initial concentration is 0.200 M and $\mathrm{CH}_{3} \mathrm{C}_{5} \mathrm{H}_{9}$ initial concentration is 0.100 M . Set up the ICE table and show the expression for K_{c}. Assume that the variable x is the amount of $\mathrm{C}_{6} \mathrm{H}_{12}$ being formed. (8 pts)

SA2: Consider the reaction $\quad \mathrm{HCO}_{3}^{-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(1) \rightarrow \mathrm{CO}_{3}^{-2}(\mathrm{aq})+\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})$
The $\mathrm{K}_{\text {eq }}$ for this reaction is 5.6×10^{-11}. Calculate the value of Q . Does the reaction go forward to product or backward to reactant? $\quad\left[\mathrm{HCO}_{3}^{-}\right]=5.6 \times 10^{-11} \quad\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=1.2 \times 10^{-11} \quad\left[\mathrm{CO}_{3}^{-}\right]=5.6 \times 10^{-11} \quad(7 \mathrm{pts})$
\qquad
Name \qquad Print Name \qquad
Please show work on all questions for partial credit even on questions which do not specify. (20 total pts) (1 pt each multiple choice)
6. Write the equation for the reverse reaction: $\quad 2 \mathrm{CH}_{4}(\mathrm{~g})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{CO}(\mathrm{g})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
(A) $\mathrm{Kp}=\frac{\left[\mathrm{P}_{\mathrm{CO}}\right]^{2}\left[\mathrm{P}_{\mathrm{H} 2 \mathrm{O}}\right]^{4}}{\left[\mathrm{P}_{\mathrm{CH} 4}\right]^{2}\left[\mathrm{PO}_{2}\right]^{3}}$
(B) $\mathrm{Kp}=\frac{2\left[\mathrm{P}_{\mathrm{CH} 4}\right]+3\left[\mathrm{P}_{2}\right]}{2\left[\mathrm{P}_{\mathrm{CO}}\right]+4\left[\mathrm{P}_{\mathrm{H} 2 \mathrm{O}}\right]}$
(C) $\mathrm{Kp}=\frac{\left[\mathrm{P}_{\mathrm{CH} 4}\right]^{2}\left[\mathrm{PO}_{\mathrm{O} 2}\right]^{3}}{\left[\mathrm{P}_{\mathrm{CO}}\right]^{2}\left[\mathrm{P}_{\mathrm{H} 2 \mathrm{O}}\right]^{4}}$
(D) $\mathrm{Kp}=\frac{2\left[\mathrm{P}_{\mathrm{CO}}\right]+4\left[\mathrm{P}_{\mathrm{H} 2 \mathrm{O}}\right]}{2\left[\mathrm{P}_{\mathrm{CH} 4}\right]+3\left[\mathrm{PO}_{2}\right]}$
2. What is true about the relationship of Kp and Kc for the $\mathrm{rxn}: 2 \mathrm{CH}_{4}(\mathrm{~g})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{CO}(\mathrm{g})+4 \mathrm{H}_{2} \mathrm{O}$ (g)
(A) Kp, Kc
(B) $\mathrm{Kp}>\mathrm{Kc}$
(C) $\mathrm{Kp}=\mathrm{Kc}$
(D) Kp and Kc are not related

3 What is the equilibrium equation for the following rxn? $\mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{~g})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
(A) $\mathrm{Kp}=\frac{\left[\mathrm{P}_{\mathrm{CO} 2}\right]^{2}\left[\mathrm{P}_{\mathrm{H} 2 \mathrm{O}}\right]^{2}}{\left[\mathrm{P}_{\mathrm{C} 2 \mathrm{H} 4}\right]\left[\mathrm{P}_{\mathrm{O} 2}\right]^{3}}$
(B) $\mathrm{Kp}=\frac{\left[\mathrm{P}_{\mathrm{C} 2 \mathrm{H} 4}\right]\left[\mathrm{P}_{\mathrm{O} 2}\right]^{3}}{\left[\mathrm{P}_{\mathrm{CO} 2}\right]^{2}}$
(C) $\mathrm{Kp}=\frac{\left[\mathrm{P}_{\mathrm{CO} 2}\right]^{2}}{\left[\mathrm{P}_{\mathrm{C} 2 \mathrm{H} 4}\right]\left[\mathrm{PO}_{\mathrm{O} 2}\right]^{3}}$
(D) $\mathrm{Kp}=\frac{\left[\mathrm{P}_{\mathrm{C} 2 \mathrm{H} 4}\right]\left[\mathrm{P}_{\mathrm{O} 2}\right]^{3}}{\left[\mathrm{P}_{\mathrm{CO} 2}\right]^{3}\left[\mathrm{P}_{\mathrm{H} 2 \mathrm{O}}\right]^{2}}$
4. If K_{c} equals 0.110 at $25^{\circ} \mathrm{C}$ for the reaction : $\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \rightarrow 2 \mathrm{NO}_{2}(\mathrm{~g})$, what is the K_{c} for the reaction:
(A) $6 \mathrm{NO}_{2}(\mathrm{~g}) \rightarrow 3 \mathrm{~N}_{2} \mathrm{O}_{4}(\mathrm{~g})$? (A) 0.11
(B) 751
(C) 7.5 (D) 1.3×10^{-3}
\leftarrow
5. Which statement is true for a reaction with $\mathrm{K}_{\mathrm{c}}=8.90 \times 10^{-12}$
(A) The reaction proceeds hardly at all towards completion. (B) The reaction proceeds nearly all the way to completion (C) Increasing the temperature will not change the value of K_{c} (D) There are appreciable concentrations of both reactants and products

SA \#1: Given the following reaction: $\mathrm{PCl}_{5}(\mathrm{~g}) \underset{\underset{\sim}{\leftarrow}}{\underset{\leftarrow}{\leftarrow}} \mathrm{PCl}_{3}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})$
At $250^{\circ} \mathrm{C} 0.250 \mathrm{M} \mathrm{PCl}_{5}$ is added to the flask. None of the product is present initially. $\mathrm{K}_{\mathrm{c}}=1.80$ Show the ICE table and the expression for the K_{c}. (8 pts)

SA \#2: The decomposition of ammonia is $2 \mathrm{NH}_{3}(\mathrm{~g}) \rightarrow \mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g})$. If the partial pressure of ammonia is 1.60 x $10^{-3} \mathrm{~atm}$ and the partial pressure of N_{2} and H_{2} are each 0.250 atm at equilibrium, what is the value for K_{p} at $400^{\circ} \mathrm{C}$ for the forward reaction? What is the number for $\Delta \mathrm{n}$ for the reaction? $\mathrm{Kp}=\mathrm{Kc}(\mathrm{RT})^{\Delta \mathrm{n}}(7 \mathrm{pts})$
\qquad
Name \qquad Print Name \qquad
Please show work on all questions for partial credit even on questions which do not specify. (20 total pts) (1 pt each multiple choice)
7. Write the equation for the reverse reaction: $2 \mathrm{CH}_{4}(\mathrm{~g})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{CO}(\mathrm{g})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
$(\mathrm{A}) \mathrm{Kp}=\frac{2\left[\mathrm{P}_{\mathrm{CH} 4}\right]+3\left[\mathrm{P}_{\mathrm{O} 2}\right]}{2\left[\mathrm{P}_{\mathrm{CO}}\right]+4\left[\mathrm{P}_{\mathrm{H} 2 \mathrm{O}}\right]}$
(B) $\mathrm{Kp}=\frac{\left[\mathrm{P}_{\mathrm{CO}}\right]^{2}\left[\mathrm{P}_{\mathrm{H} 2 \mathrm{O}}\right]^{4}}{\left[\overline{\left.\mathrm{P}_{\mathrm{CH} 4}\right]^{2}\left[\mathrm{PO}_{2}\right]^{3}}\right.}$
(C) $\mathrm{Kp}=\left[\mathrm{P}_{\mathrm{CH} 4}\right]^{2}\left[\mathrm{P}_{\mathrm{O} 2}\right]^{3}$
(D) $\quad \mathrm{Kp}=\frac{2\left[\mathrm{P}_{\mathrm{CO}}\right]+4\left[\mathrm{P}_{\mathrm{H} 2 \mathrm{O}}\right]}{2\left[\mathrm{P}_{\mathrm{CH} 4}\right]+3\left[\mathrm{P}_{\mathrm{O}}\right]}$
2. What is true about the relationship of Kp and Kc for the rxn: $2 \mathrm{CH}_{4}(\mathrm{~g})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{CO}(\mathrm{g})+4 \mathrm{H}_{2} \mathrm{O}$ (g)
\leftarrow
(B) Kp, Kc
(B) Kp and Kc are not related
(C) $\mathrm{Kp}>\mathrm{Kc}$
(D) $\mathrm{Kp}=\mathrm{Kc}$

3 What is the equilibrium equation for the following rxn? $\mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{~g})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \underset{\leftarrow}{ } 2 \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}$ (1)
(A) $\mathrm{Kp}=\frac{\left[\mathrm{P}_{\mathrm{CO} 2}\right]^{2}}{\left[\mathrm{P}_{\mathrm{C} 2 \mathrm{H} 4}\right]\left[\mathrm{P}_{\mathrm{O} 2}\right]^{3}}$
(B) $\mathrm{Kp}=\frac{\left[\mathrm{P}_{\mathrm{C} 2 \mathrm{H} 4}\right]\left[\mathrm{P}_{\mathrm{O} 2}\right]^{3}}{\left[\mathrm{P}_{\mathrm{CO} 2}\right]^{2}}$
(C) $\mathrm{Kp}=\frac{\left[\mathrm{P}_{\mathrm{CO} 2}\right]^{2}\left[\mathrm{P}_{\mathrm{H} 2}\right]^{2}}{\left[\mathrm{P}_{\mathrm{C} 2 \mathrm{H} 4}\right]\left[\mathrm{P}_{\mathrm{O} 2}\right]^{3}}$
(D) $\mathrm{Kp}=\frac{\left[\mathrm{P}_{\mathrm{C} 2 \mathrm{H} 4}\right]\left[\mathrm{P}_{\mathrm{O} 2}\right]^{3}}{\left[\mathrm{P}_{\mathrm{CO} 2}\right]^{3}\left[\mathrm{P}_{\mathrm{H} 2 \mathrm{O}}\right]^{2}}$
5. If K_{c} equals 0.110 at $25^{\circ} \mathrm{C}$ for the reaction : $\quad \mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \rightarrow 2 \mathrm{NO}_{2}(\mathrm{~g})$, what is the K_{c} for the reaction:
(B) $6 \mathrm{NO}_{2}(\mathrm{~g}) \rightarrow 3 \mathrm{~N}_{2} \mathrm{O}_{4}(\mathrm{~g})$? (A) 7.5
(B) 1.3×10^{-3} (C) 0.11
(D) 751
\leftarrow
6. Which statement is true for a reaction with $\mathrm{K}_{\mathrm{c}}=8.90 \times 10^{-12}$
(B) The reaction proceeds nearly all the way to completion (B) The reaction proceeds hardly at all towards completion. (C) Increasing the temperature will not change the value of K_{c} (D) There are appreciable concentrations of both reactants and products

SA \#1: Given the following reaction: $\mathrm{PCl}_{5}(\mathrm{~g}) \underset{\underset{\sim}{\leftarrow}}{\underset{\leftarrow}{\leftarrow}} \mathrm{PCl}_{3}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})$
At $250^{\circ} \mathrm{C} 0.150 \mathrm{M} \mathrm{PCl}_{5}$ is added to the flask. None of the product is present initially. $\mathrm{K}_{\mathrm{c}}=4.20$ Show the ICE table and the expression for the K_{c}. (8 pts)

SA \#2: The decomposition of ammonia is $2 \mathrm{NH}_{3}(\mathrm{~g}) \rightarrow \mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g})$. If the partial pressure of ammonia is 2.60 x $10^{-5} \mathrm{~atm}$ and the partial pressure of N_{2} and H_{2} are each 0.520 atm at equilibrium, what is the value for K_{p} at $400^{\circ} \mathrm{C}$ for the forward reaction? What is the number for $\Delta \mathrm{n}$ for the reaction? $\quad \mathrm{Kp}=\mathrm{Kc}(\mathrm{RT})^{\Delta \mathrm{n}}(7 \mathrm{pts})$
\qquad
Name \qquad Print Name \qquad
Please show work on all questions for partial credit even on questions which do not specify. (20 total pts)
(1 pt each multiple choice)
8. Write the equation for the reverse reaction: $2 \mathrm{CH}_{4}(\mathrm{~g})+3 \mathrm{O}_{2}(\mathrm{~g}) \underset{\leftarrow}{\leftarrow} 2 \mathrm{CO}(\mathrm{g})+4 \mathrm{H}_{2} \mathrm{O}$ (1)
$(\mathrm{A}) \mathrm{Kp}=\frac{2\left[\mathrm{P}_{\mathrm{CH} 4}\right]+3\left[\mathrm{P}_{\mathrm{O} 2}\right]}{2\left[\mathrm{P}_{\mathrm{CO}}\right]+4\left[\mathrm{P}_{\mathrm{H} 2 \mathrm{O}}\right]}$
(B) $\mathrm{Kp}=\left[\mathrm{P}_{\mathrm{CO}}\right]^{2}\left[\mathrm{P}_{\mathrm{H} 2 \mathrm{O}}\right]^{4}$
(C) $\mathrm{Kp}=\frac{\left[\mathrm{P}_{\mathrm{CH} 4}\right]^{2}\left[\mathrm{P}_{\mathrm{O} 2}\right]^{3}}{\left[\mathrm{P}_{\mathrm{CO}}\right]^{2}}$
(D) $\begin{aligned} & \mathrm{Kp}=2\left[\mathrm{P}_{\mathrm{CO}}\right]+4\left[\mathrm{P}_{\mathrm{H} 2 \mathrm{O}}\right] \\ & 2\left[\mathrm{P}_{\mathrm{CH} 4}\right]+3\left[\mathrm{P}_{\mathrm{O} 2}\right]\end{aligned}$
2. What is true about the relationship of Kp and Kc for the $\mathrm{rxn}: 2 \mathrm{CH}_{4}(\mathrm{~g})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{CO}(\mathrm{g})+4 \mathrm{H}_{2} \mathrm{O}$ (g)
\leftarrow
(C) $\mathrm{Kp}>\mathrm{Kc}$
(B) Kp and Kc are not related
(C) $\mathrm{Kp}<\mathrm{Kc}$
(D) $\mathrm{Kp}=\mathrm{Kc}$

3 What is the equilibrium equation for the following rxn ? $\mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{~g})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \underset{\leftarrow}{\rightarrow} 2 \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
(A) $\mathrm{Kp}=\frac{\left[\mathrm{P}_{\mathrm{CO} 2}\right]^{2}}{\left[\mathrm{P}_{\mathrm{C} 2 \mathrm{H} 4}\right]\left[\mathrm{P}_{\mathrm{O} 2}\right]^{3}}$
(B) $\mathrm{Kp}=\frac{\left[\mathrm{P}_{\mathrm{C} 2 \mathrm{H} 4}\right]\left[\mathrm{P}_{\mathrm{O} 2}\right]^{3}}{\left[\mathrm{P}_{\mathrm{CO} 2}\right]^{2}}$
(C) $\mathrm{Kp}=\frac{\left[\mathrm{P}_{\mathrm{CO} 2}\right]^{2}\left[\mathrm{P}_{\mathrm{H} 2}\right]^{2}}{\left[\mathrm{P}_{\mathrm{C} 2 \mathrm{H} 4}\right]\left[\mathrm{P}_{\mathrm{O} 2}\right]^{3}}$
(D) $\mathrm{Kp}=\frac{\left[\mathrm{P}_{\mathrm{C} 2 \mathrm{H} 4}\right]\left[\mathrm{P}_{\mathrm{O} 2}\right]^{3}}{\left[\mathrm{P}_{\mathrm{CO} 2}\right]^{3}\left[\mathrm{P}_{\mathrm{H} 2 \mathrm{O}}\right]^{2}}$
6. If K_{c} equals 0.110 at $25^{\circ} \mathrm{C}$ for the reaction: $\quad \mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \rightarrow 2 \mathrm{NO}_{2}(\mathrm{~g})$, what is the K_{c} for the reaction:
(C) $4 \mathrm{NO}_{2}(\mathrm{~g}) \underset{\leftarrow}{\leftarrow}$ 2 $\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) ?(\mathrm{~A}) 82.6$
(B) 1.3×10^{-3} (C) 0.11
(D) 751
7. Which statement is true for a reaction with $\mathrm{K}_{\mathrm{c}}=8.90 \times 10^{-12}$
(C) The reaction proceeds nearly all the way to completion (B) The reaction proceeds hardly at all towards completion. (C) Increasing the temperature will not change the value of K_{c} (D) There are appreciable concentrations of both reactants and products

SA \#1: Given the following reaction: $\mathrm{PCl}_{3}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow \mathrm{PCl}_{5}(\mathrm{~g})$ \leftarrow
At $250^{\circ} \mathrm{C} 0.150 \mathrm{M} \mathrm{PCl}_{3}, 0.210 \mathrm{M} \mathrm{Cl}_{2}$ is added to the flask. None of the product is present initially. $\mathrm{K}_{\mathrm{c}}=4.20$ Show the ICE table and the expression for the K_{c}. (8 pts)

SA \#2: The decomposition of ammonia is $2 \mathrm{NH}_{3}(\mathrm{~g}) \rightarrow \mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g})$. If the partial pressure of ammonia is 2.60 x $10^{-5} \mathrm{~atm}$ and the partial pressure of N_{2} is 0.359 atm and H_{2} are 0.723 atm at equilibrium, what is the value for K_{p} at $400^{\circ} \mathrm{C}$ for the forward reaction? What is the number for $\Delta \mathrm{n}$ for the reaction? $\quad \mathrm{Kp}=\mathrm{Kc}(\mathrm{RT})^{\Delta \mathrm{n}}(7 \mathrm{pts})$

