Organic Chemistry, Fifth Edition

Janice Gorzynski Smith University of Hawai'i

Chapter 9 Alcohol, Ethers, Epoxides

Modified by Dr. Juliet Hahn

(3) Conversion of alcohols to akyl halides with SOCl₂ and PBr₃

- Primary and 2° alcohols can be converted to alkyl halides using SOCl₂ and PBr₃. Alcohols to Alkyl Halides with SOCl₂
- SOCI₂ (thionyl chloride) converts alcohols into alkyl chlorides.
- PBr₃ (phosphorus tribromide) converts alcohols into alkyl bromides.

Conversion of Alcohols to Alkyl Chlorides with SOCI₂

When a 1° or 2° alcohol is treated with SOCl₂ and pyridine, an alkyl chloride is formed, with HCl and SO₂ as by-products.

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

OH +
$$SOCl_2$$
 pyridine 1° alkyl chloride

OH + $SOCl_2$ pyridine 1° alkyl chloride

OH + $SOCl_2$ pyridine 2° alkyl chloride

Conversion of Alcohols to Alkyl Bromides with PBr₃

• Treatment of a 1° or 2° alcohol with PBr₃ forms an alkyl halide.

Copyright @ McGraw-Hill Education. All rights reserved. No reproduction or

Table 9.2 Summary of Methods for ROH → RX

Overall reaction	Reagent	Comment
ROH → RCI	HCI	 Useful for all ROH An S_N1 mechanism for 2° and 3° ROH; an S_N2 mechanism for CH₃OH and 1° ROH
	SOCI ₂	 Best for CH₃OH, and 1° and 2° ROH An S_N2 mechanism
ROH → RBr	HBr	 Useful for all ROH An S_N1 mechanism for 2° and 3° ROH; an S_N2 mechanism for CH₃OH and 1° ROH
	PBr ₃	 Best for CH₃OH, and 1° and 2° ROH An S_N2 mechanism
ROH → RI	HI	 Useful for all ROH An S_N1 mechanism for 2° and 3° ROH; an S_N2 mechanism for CH₃OH and 1° ROH

(4) Tosylate as Leaving Group

- Alcohols can be converted into alkyl tosylates.
- An alkyl tosylate is composed of two parts: the alkyl group R, derived from an alcohol; and the tosylate (short for ptoluenesulfonate), which is a good leaving group.
- A tosyl group, $CH_3C_6H_4SO_2^-$, is abbreviated Ts, so an alkyl tosylate becomes ROTs (all rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

Formation and Use of Tosylates

- Alcohols are converted to tosylates by treatment with ptoluenesulfonyl chloride (TsCl) in the presence of pyridine.
- This process converts a poor leaving group (¬OH) into a good one (¬OTs).
- Tosylate is a good leaving group because its conjugate acid, p-toluenesulfonic acid (CH₃C₆H₄SO₃H, TsOH) is a strong acid (pK_a = −7).

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

Substitution and Elimination of Tosylates

- Because alkyl tosylates have good leaving groups, they undergo both nucleophilic substitution and β elimination, exactly as alkyl halides do.
- Generally, alkyl tosylates are treated with strong nucleophiles and bases, so the mechanism of substitution is S_N^2 , and the mechanism of elimination is E2.

Summary of Substitution and Elimination Reactions of Alcohols

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

Figure 9.8

Summary: Nucleophilic substitution and β elimination reactions of alcohols

(4) Reaction of Ethers with Strong Acid

- In order for ethers to undergo substitution or elimination reactions, their poor leaving group must first be converted into a good leaving group by reaction with strong acids such as HBr and HI.
- HBr and HI are strong acids that are also sources of good nucleophiles (Br⁻ and I⁻, respectively).
- When ethers react with HBr or HI, both C-O bonds are cleaved and two alkyl halides are formed as products.

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or

13

(5) Reactions of Epoxides

- Epoxides do not contain a good leaving group.
- Epoxides do contain a strained three-membered ring with two polar bonds.
- Nucleophilic attack opens the strained three-membered ring, making it a favorable process even with a poor leaving group.

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

Addition of Nucleophiles to Epoxides

 Nucleophilic addition to epoxides occurs readily with strong nucleophiles and with acids like HZ, where Z is a nucleophilic atom.

> Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

Synthesis of Bronchodilators from epoxides

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

Figure 9.11

The synthesis of two bronchodilators uses the opening of an epoxide ring.

$$C_6H_5$$
 C_6H_5 C_6H_5

$$+ H_2\ddot{N} + H_2\ddot{N} + H_0 +$$

Generic name albuterol
Trade names Proventil, Ventolin

 A key step in each synthesis is the opening of an epoxide ring with a nitrogen nucleophile to form a new C – N bond, shown in red.

© McGraw-Hill Education/Jill Braaten, photographer

Leukotriene synthesis and Asthma drugs

- Leukotrienes are synthesized in cells by oxidation of arachidonic acid to 5-HPETE.
- This is then converted to an epoxide, leukotriene A₄.
- Ring opening the epoxide yields leukotriene C₄.
- New asthma drugs act by blocking the synthesis of leukotriene C4, for example by inhibiting the enzyme lipoxygenase needed in the biosynthesis.

End 11/1/17 W End Exam IV